Chemistry 217 Fall 2011 Problem Set 1

- 1.1 12.0 moles of molecular nitrogen are contained in a 2.0 L cylinder at 30°C. Calculate the pressure in bar according to the
 - (a) Ideal Gas law
 - (b) Van der Waals equation. The Van der Waals constants for N_2 are a = 1.408 L^2 .bar.mol⁻² and b = 0.03913 L.mol⁻¹. Assuming that the Van der Waals equation gives the right answer, what is the percent error in using the ideal gas law?
- 1.2 Nitrogen Tetroxide is partially dissociated in the gas phase according to the reaction

$$N_2O_4(g) = 2NO_2(g)$$

A mass of 1.588 g of N_2O_4 is placed in a 500 cm³ glass vessel at 298 K and dissociates to an equilibrium mixture at 1.0133 bar.

- (a) What are the mole fractions of N_2O_4 and NO_2 ?
- (b) What percentage of the N_2O_4 has dissociated? Assume that the gases are ideal.
- 1.3 (a) At 1.0 atm pressure the volume of 1.0 mole of nitrogen gas is 22,401 cm³ at 0.00°C and 30,627 cm³ at 100°C. Using only these data, estimate the temperature of the absolute zero on the centigrade scale.
 - (b) At 0.1 atm pressure the molar volume of nitrogen is 224,130 cm³ at 0.00°C and 306,200 cm³ at 100°C. From these data, again estimate the temperature of the absolute zero.
 - (c) If we extrapolate the results of parts (a) and (b) to zero pressure, what is the calculated temperature of the absolute zero?
- 1.4 The coefficients of isobaric thermal expansion α and isothermal compressibility κ are defined by

$$\alpha = (1/V)(V/T)_{P}$$
 and $\kappa = -(1/V)(V/T)_{T}$

- (a) Obtain expressions for α_{ideal} and κ_{ideal} for a gas that obeys the ideal gas law. Simplify these expressions as much as possible and give the answers in terms of p and T only.
- (b) Derive expressions for the ratios α/α_{ideal} and κ/κ_{ideal} for a slightly nonideal gas that obeys the equation of state $p\overline{V} = RT + bp$ where $\overline{V} = V/n$. Again simplify your answers as much as possible (you may need more than just p and T for this answer).
- 1.5 It is of interest to calculate the total and partial pressures at the top of Mt. Everest [Most Nepali people refer to the mountain as *Sagarmatha*, meaning "Forehead in the Sky." Speakers of Tibetan languages, including the Sherpa people of northern Nepal, refer to the mountain as *Chomolungma*, Tibetan for "Goddess Mother of the World." The height of Mount Everest has been determined to be 29,035 feet.]

Calculate the total pressure and oxygen partial pressure at the mountain top. For the barometric formula, use an "average molecular weight of air" equal to $(0.781 \times 28 + 0.209 \times 32 + 0.010 \times 40)$.

It is a reasonable approximation to use an average air temperature between sea level and 10,000 m equal to 0°C (273 K). The significance of the O_2 partial pressure you calculate will be evident to anyone who has actually attempted to climb Mt. Everest or, indeed, any mountain peak over 12,000 feet.