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Problem 1   (20 Points)   

Let  = {0,1} 

a. (10) Give a language L such that  {, 0, 01 } L = {0, 01, 10, 010, 011, 0110 } = B 

Seeking a language L such that A L = B, where A = {, 0, 01 }  and B = {0, 01, 10, 010, 011, 0110 } 

 

Impossible to find such an L :    

  B, so    L (since if L then B, because A). 

So 0L (to get 0B, and since   L, the only way is to concatenate A with 0 in L) 

But if 0L, then 00B (concatenation of  0A with  0L) which is not the case. 

 

 

N. B. 

If B = {1, 01, 10, 010, 011, 0110}, then L = {1, 10} 

 

 

 

b. (10) Show that for any languages A, B   (AB)*A = A(BA)* 

 

Let w(AB)*A .  Then w = ux, where u (AB)* and xA .  So u = u1 u2 …uk for some k ≥ 0, with each 

ujAB , j=1,2,…,k.   

 

Now ujAB, means that uj= xj yj, xjA and yjB, j=1,2,…,k. 

 

Thus u =  x1 y1 x2 y2 …xk yk  

Where we have dropped the parenthesis, because concatenation is associative.  Also, by associativity, 

 

So, w = (x1 y1)(x2 y2) …(xk yk ) x =  x1 ( y1x2)( y2 x3) …(yk x)  A(BA)* 

because  x1 A and ( y1x2)( y2 x3) …(yk x)  (BA)*. 

 

So    (AB)*A  A(BA)*. 

 

Similarly,  A(BA)* (AB)*A .
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Problem 2   (20 Points)   

Let  = {0,1}, and consider the following language: 

 A = { w* | w contains a 1 in its second position from the right } 

So 0010A, 11A, 110A, but 0, 000, 100, 1001 are not in A. 

 

a.  (8) Show that A is regular by giving the state diagram of a deterministic finite automata (DFA), 

with as small a number of states as possible, that recognizes A. (Hint: DFA remembers what are 

the last two characters read from input)  

 

To design the DFA, pretend that the DFA is reading a string of 0’s and 1’s.  Then there are 4 

possibilities for the last two characters read: 00, 01, 10, 11.  The DFA will have a state for 

each of these cases.  The transition rules, are constructed accordingly. The DFA will be as 

follows: 

 

 0 

 

         1 

 

 

 

    0 1 0   1 

 

 

   0 

 

         1 

 

b. (6) Give as simple a regular expression as possible that describes A 

 

 

(01)*1(01)   or  * 1  

 

 

 

c. (6) Give the state diagram of a non-deterministic finite automaton (NFA), with as small a number of 

states as possible, that recognizes A.  

  0,1 

 
 

  1   0, 1 

 

 

 

 

 

 

 

q00 q01 

 

q10 q11 

 

q1 q2 

 
q2 
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Problem 3   (15 Points)   

This problem relates to the “equivalence construction” for constructing the equivalent DFA to a given NFA.  

Let  = {0,1}, and consider the following NFA  N: 

 

N  0,1 

 
 

     0     

 

 

a. (5) What is the language recognized by N?     

 

L(N) = { w* |   u0, u* }; i.e. set of strings that end with a 0. 

 

 

b.  (10) Give the construction of the DFA that is equivalent to the NFA N above, according to the 

equivalence construction, where, starting with the start state, only states reachable from the start state 

are considered. (Should be simple). 

 

1       0 

 

 

0 

 

1

q1 q2 

 

{q1} {q1,q2} 
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Problem 4 (10 Points)  
This problem relates to the proof that every regular language can be represented by a regular 

expression.  Consider the DFA M whose state diagram is   

M          0   0 

      

1 1 

                       

           0, 1 

 
a. (4) Give the state diagram of a 5-state GNFA that is equivalent to the given DFA 

above. (Show all transition arrows, including those labeled with  )  

 
 

     
   

G          0   0       

      

1                  1            1       

                          01   

                    

 
                         

    

 

 

 
b. (6) Give the state diagram of a 4-state GNFA that is equivalent to the GNFA in (a) 

obtained by eliminating q3, 

     

   

          0          1(01)  0       

      

2                  1               1  

                       

                                  

       

         
 

 

 

 

  

          

 

 

q1 q2 

2 
q3 

q1 q2 

2 
q3 a 

 
s 

q1 q2 

2 
a 

 

s 
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Problem 5 (10 Points) 

 

Consider M to be:   

M          0   0 

      

1   1  0 

                       

           1  0, 1 

 

Here we are going to illustrate the proof of the pumping lemma, as we trace the computation of M on 

the string s = 1101011.Complete the following: 

 

a. (2) The pumping length is __4___, because  M has 4 states 

 

b. (3)   The computation of M on s = 1101011, goes through the following sequence of states:   (fill 

out the sequence of states by indicating the subscript.) 

 

 

   q1 
1

 q2 
1

        q3 
         0

       q4         
1

      q3    
0

        q4 
         1 

     q3    
1
    q2 

 

 

c. (5)  So according to the pumping lemma proof,  s =  x y z    where 

 

 x =    11,  

 

y =    01,  and  

 

z =      011 

 

 

 

  

q1 q2 

2 

q3 q4 
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Problem 6 (20 Points) 

Let   = {0,1}, and consider the language D = {0
n 

10
n
 |  n ≥ 0 }.  

a. (5) In an attempt to show that D is not regular using the pumping lemma, a “proof” starts as 

follows: “Assume, that D  is regular and let p>0 be the pumping length. Let s=0
p

 1
p
 . Then |s| =2p 

> p. So s may be decomposed as s=xyz, ect…” This cannot lead to a proof. Why not? 

 

The string  s=0
p

 1
p
 is not “a good choice”, as it is not in the language D. 

 

b. (10) Prove that D is not regular using the Pumping Lemma. 

 

Assume, that D  is regular and let p>0 be the pumping length. Let s=0
p

 10
p

 . Then |s| =2p+1 > p. 

So, according to the pumping lemma, s may be decomposed as s=xyz, such that:  

1. xy
i
z A, for each i 0, 

2.  |y| > 0; i.e. y , and 

3.  |xy|  p. 

We show that there is a contradiction: 

By (3) above, y=0
l
 where 0  l  p.  By (2), l > 0.  So 0 < l  p.  

 

But then, xy
2
z = xyyz = 0

p+l
 10

p
 which is not in D, since p+l > p, which contradicts (1) with 

i=2. 

 

Thus our assumption is false, and D is not regular. 

 

 

 

 

 

c. (5) Using (b) and closure properties of regular languages, show that PAL={w = w
R
 | w* }the 

set of palindromes is not regular. 

 

 

It is not difficult to see that  

D = PAL  0*10* 

D is not regular (proven in part (a)) 

0*10* represents a regular language (being a regular expression !!!) 

Hence, by closure properties, PAL is not regular. 
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Problem 7 (15 Points) 

Let   = {0,1.  Let A be a language over  and let B = { w* | w=01u, for some u A}, 

 i.e., a string is in B if it starts with a 01 followed by a string in A.  

 

a. (5) Show that if A is regular then B is regular. 

 

B = {01}o A 

 

{01} is regular, and A is regular, so their concatenation is regular.  Thus B is regular 

 

 

 

 

b. (10) Show that if B is regular then A is regular (Hint: Start with a DFA M that recognizes B. 

Construct a finite automaton that recognizes A). 

 

Let M(K, , , s, F) be a DFA that recognizes B.  Let p be the state we arrive at in M after 

processing the character 0 then the character 1; i.e. q = (s,0), and p = (q,0).  Define a DFA M’ 

(K’, , ’, s’, F’)  where it is the same as M except that its start state is p. i.e.   

 

K’ = K 

s’= p 

’ =  

F’ = F 

Then M’ recognizes A. 


