Quiz 1 - Solution

Problem 1 (15 Points)

Let $\Sigma=\{0,1\}$
a. (10) Let $L=\{1,01,100\}$. Specify, by circling the appropriate answer, whether each of the following is true or false. Then, in each case justify your answer.
i. $110001110011 \in L^{*}$.
(True False
$110001110011=1 \circ 100 \circ 01 \circ 1 \circ 100 \circ 1 \circ 1$
So it is the concatenation of 7 strings all coming from L. So it is in L^{*}
ii. $\quad 11000011001 \in L^{*}$.

True False
There is no way to get 4 successive 0 's by concatenating strings of L. The max is 3 successive 0 's by concatenating 100 with $01 \ldots$
b. (5) Let L and N be the two finite languages $L=\{\varepsilon, 0,10\}$ and $N=\{1,01,001,101,1001\}$

Find a language M such that $L o M=N$.
$M=\{1,01\}$

Problem 2 (20 Points)

Let $\Sigma=\{0,1\}$, and consider the language $A=\left\{w \in \Sigma^{*}: w\right.$ is of even length $\}$
a. (8) Give a simple DFA with as small a number of states as possible that recognizes A.

b. (5) Argue that it is impossible to have a DFA that recognizes A, that will have a smaller number of states than the DFA you have proposed in (a).

If there is a DFA that has a smaller number of states, then it must have one state. But there are only 2 DFA's that have one state:
 and

which recognize Σ^{*} and ϕ respectively, and not A.
c. (7) Give a simple regular expression for A.

$$
(\Sigma \Sigma)^{*} \quad \text { or } \quad((0 \cup 1)(0 \cup 1))^{*}
$$

Page | 1

Problem 3 (20 Points)

Let $\Sigma=\{0,1\}$, and consider the following NFA N :

a. (5) What is the language B recognized by N ?
$B=\left\{w \in \Sigma^{*} \mid w\right.$ has at most one 0 and ends with a 1$\}$
b. (5) Give a simple regular expression for the language B of N.

$$
1 *(0 \cup \varepsilon) 1 * 1
$$

c. (10) Give the construction of the DFA that is equivalent to the NFA N above, as in Theorem 1.39. You can include only the states reachable from the start state.

Problem 4 (20 Points)

Let $\Sigma=\{0,1\}$, and consider the language $D=\left\{u u^{R} \mid u \in \Sigma^{*}\right\}$.
a. (10) Prove that D is not regular using the Pumping Lemma.

Assume that D is regular, and let $p>0$ be the pumping length. Let $s=0^{p} 110^{p}$.
Then $s \in D$, and $|s|=2 p+2>p$. So by the Pumping Lemma, s can be subdivided into three pieces, $s=x y z$ such that

1. $x y^{i} z \in D$, for all $i=0,1,2, \ldots$.
2. $y \neq \varepsilon$
3. $|x y| \leq p$

By 3, it follows that $y=0^{k}$ where $0 \leq k<p$.
By $2, k>0$. So $0<k<p$.
In 1 , let $i=2$: So $x y y z=0^{p+k} 110^{p}$, which is not in D, since $k>0$. Contradiction.
So, our assumption that D is regular is false, and hence D is not regular.
b. (10) Using (b) and closure properties of regular languages, show that $P A L=\left\{w=w^{R} \mid w \in \Sigma^{*}\right\}$ the set of palindromes is not regular. (Hint: Find an appropriate language X such that $D=P A L \cap X$.)
Let $X=A$, the set of even length strings of Problem 1 above. A is regular.
Observe that $D=P A L \cap A . \quad$ (Palindromes and of even length)
Assume $P A L$ is regular. A is regular, then by closure properties their intersection will be regular. But their intersection is D which is not regular as shown in part (a) above.
Contradiction. So our assumption is false, and hence $P A L$ is not regular.
Page | 2

Problem 5 (15 Points)

Let $\Sigma=\{0,1\}$, and consider the following language:
$A=\left\{w \in \Sigma^{*} \mid w=a_{1} b_{1} a_{2} b_{2} \ldots a_{n} b_{n}, n>0\right.$, and as binary numbers $\left.a_{1} a_{2} \ldots a_{n}>b_{1} b_{2} \ldots b_{n}\right\}$ E.g. $001011 \in A$, since $011>001$, and $0110 \notin A$, since 01 is not >10.

Show that A is regular by giving the state diagram of a deterministic finite automata (DFA), with as small a number of states as possible, that recognizes A. Give a brief explanation in English of your DFA (What is the main idea).
(Hint: For two binary numbers of the same length, how do you check which is the larger of the two?)
$a_{1} a_{2} \ldots a_{n}>b_{1} b_{2} \ldots b_{n}$ iff $a_{j}=1$, and $b_{j}=0$, where j is the smallest integer where $a_{j} \neq b_{j}$. i.e. it is the first position from the left, where the $a_{j} \neq b_{j}$

q_{5} and q_{6} : to make sure the accepted string is of even length.

Problem 6 (10 Points)

Let $\Sigma=\{0,1, \equiv, \times\}$, and consider

$$
L=\left\{u \equiv 10 \times v \mid u, v \in\{0,1\}^{*}, \text { and } u \text { is twice } v \text { as binary numbers }\right\}
$$

In fact, $u=v 0$. So $1010=10 \times 101 \in L$ since 1010 is twice 101 (in decimal 10 is twice 5); $1010=10 \times 1$ is not in L since 1010 is not twice 1 .

Show that L is not regular using the pumping lemma by completing the following, (and choosing an appropriate s.)

Assume, that L is regular and let $p>0$ be the pumping length.
Let $\mathrm{s}=1^{p} 0 \equiv 10 \times 1^{p}$. Then $s \in L$ and $|s|=2 p+5>p$. So by the Pumping Lemma, we should be able to find x, y, z such that $s=x y z$, and

1. $x y^{i} z \in L$, for all $i=0,1,2, \ldots$.
2. $y \neq \varepsilon$
3. $|x y| \leq p$

By 3, it follows that $y=1^{k}$ where $0 \leq k<p$.
By $2, k>0$. So $0<k<p$.
In 1, let $i=2$: So $x y y z=1^{p+k} 0 \equiv 10 \times 1^{p}$, which is not in L, since $u=1^{p+k} 0, k>0$, and $v=1^{p}$, and u is not twice v. Contradiction.

So, our assumption that L is regular is false, and hence L is not regular.

