> Lab #10: <

Determination of Na and K by Flame Emission

Spectroscopy

Chem. 216

Mohammad Shour

Walid Malki

Tarek Balshi

Date performed: wed, 4, 5, 2011

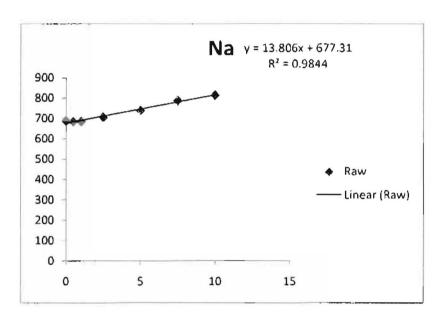
Date submitted: wed, 10, 5, 2011

Purpose:

In this experiment, we try to find the mass of Ca. Na, and K in 2 mineral water samples, Sohha, and Tannourine using flame emission spectroscopy.

Procedure:

We followed exactly the procedure of the lab manual except for the dilutions of the sample from which we injected samples into the Flame Photometer:


Metal	Na+		K+		Ca2+		Na+	K+	Ca2+	
Conc.	Concentration of stock solution (ppm)				Conc. Of prepared			Final		
Mg/l						std.(ppm)			v	
ppm	50		100		500		Na	K	Ca	Vf
Vml	Vml	Df	V	Df	Vml	Df				
			microl							
stds	VNa+	Na	VK+	K	VCa2+	Ca				25
Std1	0.25	100	125	200	0.5	50	0.5	0.5	10	25
Std2	0.5	50	250	100	1.25	20	1	1	25	25
Std3	1.25	20	375	66.7	2.5	10	2.5	1.5	50	25
Std4	2.5	10	500	50	3.75	6.67	5	2	75	25
Std5	3.75	6.67	625	40	5	5	7.5	2.5	100	25
Std6	5	5	1250	20	6.25	4	10	5	125	25

Data/results:

	Na(ppm)	K(ppm)	Ca(ppm)
Tannourine1	2.0	0.2	129.8
Tannourine 2	2.3	0.1	123.1
average	2.15	0.15	126.45
Sohha 1	1.4	0.1	126
Sohha 2	1.3	0.2	125.5
average	1.35	1.15	125.75

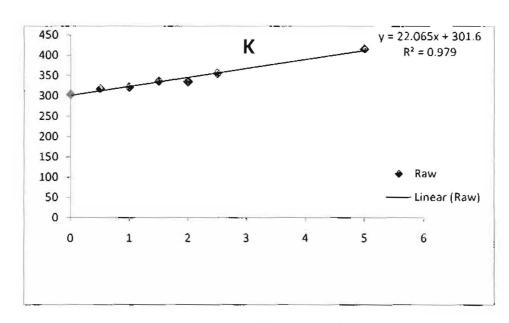
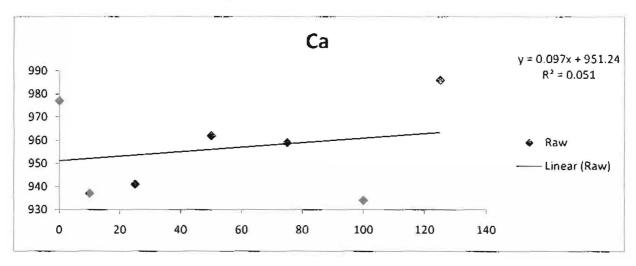

Na					
(ppm)	Raw	K (ppm)	Raw	Ca(ppm)	Raw
0	688	0	304	0	977
0.5	684	0.5	318	10	937
1	685	1	322	25	941
2.5	707	1.5	336	50	962
5	740	2	335	75	959
7.5	788	2.5	356	100	934
10	815	5	416	125	986

Table1: results of the standards



Graph1: calibration curve for Na

	C(ppm)	
	tannourine	sohha
Na	2.15	1.35
K	0.15	1.15
Ca	126.45	125.75

Graph2: calibration curve for K

Graph 3: calibration curve for Ca

Discussions:

First: results were:

	C(ppm)		
	tannourine	sohha	
Na	2.15	1.35	
K	0.15	1.15	
Ca	126.45	125.75	

Table 2 mentions that the limits of detection of the instrument are:

0.02 ppm for each of Na and K and 1.0 ppm for Ca which are less than the results obtained, in addition, the optimal range is:

Na: 1000ppm

K: 1000ppm

Ca :> 1000ppm

Since we are using a multipoint calibration curve.

These specifications are in accordance with the results we obtained which are between the limit of detection and the optimal range.

The results are close to the one's given on the sample.

Conclusion:

In this experiment, we wanted to find the concentration of Ca, Na, and K for that, we used a flame emission photometer.