Chapter 8

8-1
(a)

Thread depth $=2.5 \mathrm{~mm} \quad$ Ans.
Width $=2.5 \mathrm{~mm} \quad$ Ans.
$d_{m}=25-1.25-1.25=22.5 \mathrm{~mm}$
$d_{r}=25-5=20 \mathrm{~mm}$
$l=p=5 \mathrm{~mm} \quad$ Ans.
(b)

Thread depth $=2.5 \mathrm{~mm}$ Ans.
Width at pitch line $=2.5 \mathrm{~mm}$ Ans.
$d_{m}=22.5 \mathrm{~mm}$
$d_{r}=20 \mathrm{~mm}$
$l=p=5 \mathrm{~mm} \quad$ Ans.

8-2 From Table 8-1,

$$
\begin{aligned}
& d_{r}=d-1.226869 p \\
& d_{m}=d-0.649519 p \\
& \bar{d}=\frac{d-1.226869 p+d-0.649519 p}{2}=d-0.938194 p \\
& \quad A_{t}=\frac{\pi \bar{d}^{2}}{4}=\frac{\pi}{4}(d-0.938194 p)^{2} \quad \text { Ans. }
\end{aligned}
$$

8-3 From Eq. (c) of Sec. 8-2,

$$
\begin{gathered}
P=F \frac{\tan \lambda+f}{1-f \tan \lambda} \\
T=\frac{P d_{m}}{2}=\frac{F d_{m}}{2} \frac{\tan \lambda+f}{1-f \tan \lambda} \\
e=\frac{T_{0}}{T}=\frac{F l /(2 \pi)}{F d_{m} / 2} \frac{1-f \tan \lambda}{\tan \lambda+f}=\tan \lambda \frac{1-f \tan \lambda}{\tan \lambda+f} \quad \text { Ans. }
\end{gathered}
$$

Using $f=0.08$, form a table and plot the efficiency curve.

λ, deg.	e
0	0
10	0.678
20	0.796
30	0.838
40	0.8517
45	0.8519

8-4 Given $F=6 \mathrm{kN}, l=5 \mathrm{~mm}$, and $d_{m}=22.5 \mathrm{~mm}$, the torque required to raise the load is found using Eqs. (8-1) and (8-6)

$$
\begin{aligned}
T_{R} & =\frac{6(22.5)}{2}\left[\frac{5+\pi(0.08)(22.5)}{\pi(22.5)-0.08(5)}\right]+\frac{6(0.05)(40)}{2} \\
& =10.23+6=16.23 \mathrm{~N} \cdot \mathrm{~m} \quad \text { Ans. }
\end{aligned}
$$

The torque required to lower the load, from Eqs. (8-2) and (8-6) is

$$
\begin{aligned}
T_{L} & =\frac{6(22.5)}{2}\left[\frac{\pi(0.08) 22.5-5}{\pi(22.5)+0.08(5)}\right]+\frac{6(0.05)(40)}{2} \\
& =0.622+6=6.622 \mathrm{~N} \cdot \mathrm{~m} \quad \text { Ans. }
\end{aligned}
$$

Since T_{L} is positive, the thread is self-locking. The efficiency is
Eq. (8-4):

$$
e=\frac{6(5)}{2 \pi(16.23)}=0.294 \quad \text { Ans }
$$

8-5 Collar (thrust) bearings, at the bottom of the screws, must bear on the collars. The bottom segment of the screws must be in compression. Where as tension specimens and their grips must be in tension. Both screws must be of the same-hand threads.

8-6 Screws rotate at an angular rate of

$$
n=\frac{1720}{75}=22.9 \mathrm{rev} / \mathrm{min}
$$

(a) The lead is 0.5 in , so the linear speed of the press head is

$$
V=22.9(0.5)=11.5 \mathrm{in} / \mathrm{min} \text { Ans. }
$$

(b) $F=2500 \mathrm{lbf} /$ screw

$$
\begin{aligned}
d_{m} & =3-0.25=2.75 \mathrm{in} \\
\sec \alpha & =1 / \cos (29 / 2)=1.033
\end{aligned}
$$

Eq. (8-5):

$$
T_{R}=\frac{2500(2.75)}{2}\left(\frac{0.5+\pi(0.05)(2.75)(1.033)}{\pi(2.75)-0.5(0.05)(1.033)}\right)=377.6 \mathrm{lbf} \cdot \mathrm{in}
$$

Eq. (8-6):

$$
\begin{aligned}
T_{c} & =2500(0.06)(5 / 2)=375 \mathrm{lbf} \cdot \mathrm{in} \\
T_{\text {total }} & =377.6+375=753 \mathrm{lbf} \cdot \mathrm{in} / \text { screw } \\
T_{\text {motor }} & =\frac{753(2)}{75(0.95)}=21.1 \mathrm{lbf} \cdot \mathrm{in} \\
H & =\frac{T n}{63025}=\frac{21.1(1720)}{63025}=0.58 \mathrm{hp} \quad \text { Ans. }
\end{aligned}
$$

8-7 The force F is perpendicular to the paper.

$$
\begin{aligned}
& L=3-\frac{1}{8}-\frac{1}{4}-\frac{7}{32}=2.406 \text { in } \\
& T=2.406 F \\
& M=\left(L-\frac{7}{32}\right) F=\left(2.406-\frac{7}{32}\right) F=2.188 F \\
& S_{y}=41 \mathrm{kpsi} \\
& \sigma=S_{y}=\frac{32 M}{\pi d^{3}}=\frac{32(2.188) F}{\pi(0.1875)^{3}}=41000 \\
& F=12.13 \mathrm{lbf} \\
& T=2.406(12.13)=29.2 \mathrm{lbf} \cdot \text { in } \text { Ans. }
\end{aligned}
$$

(b) Eq. (8-5), $2 \alpha=60^{\circ}, l=1 / 14=0.0714$ in, $f=0.075, \sec \alpha=1.155, p=1 / 14$ in

$$
\begin{aligned}
& d_{m}=\frac{7}{16}-0.649519\left(\frac{1}{14}\right)=0.3911 \text { in } \\
& T_{R}=\frac{F_{\text {clamp }}(0.3911)}{2}\left(\frac{\text { Num }}{\text { Den }}\right) \\
& \text { Num }=0.0714+\pi(0.075)(0.3911)(1.155) \\
& \text { Den }=\pi(0.3911)-0.075(0.0714)(1.155) \\
& T=0.02845 F_{\text {clamp }} \\
& F_{\text {clamp }}=\frac{T}{0.02845}=\frac{29.2}{0.02845}=1030 \text { lbf Ans. }
\end{aligned}
$$

(c) The column has one end fixed and the other end pivoted. Base decision on the mean diameter column. Input: $C=1.2, D=0.391 \mathrm{in}, S_{y}=41 \mathrm{kpsi}, E=30\left(10^{6}\right) \mathrm{psi}$, $L=4.1875 \mathrm{in}, k=D / 4=0.09775 \mathrm{in}, L / k=42.8$.

For this J. B. Johnson column, the critical load represents the limiting clamping force for bucking. Thus, $F_{\text {clamp }}=P_{\text {cr }}=4663 \mathrm{lbf}$.
(d) This is a subject for class discussion.

8-8

$$
\begin{aligned}
T & =6(2.75)=16.5 \mathrm{lbf} \cdot \mathrm{in} \\
d_{m} & =\frac{5}{8}-\frac{1}{12}=0.5417 \mathrm{in} \\
l & =\frac{1}{6}=0.1667 \mathrm{in}, \quad \alpha=\frac{29^{\circ}}{2}=14.5^{\circ}, \quad \sec 14.5^{\circ}=1.033
\end{aligned}
$$

Eq. (8-5): $\quad T=0.5417(F / 2)\left[\frac{0.1667+\pi(0.15)(0.5417)(1.033)}{\pi(0.5417)-0.15(0.1667)(1.033)}\right]=0.0696 F$
Eq. (8-6):

$$
\begin{aligned}
T_{c} & =0.15(7 / 16)(F / 2)=0.03281 F \\
T_{\text {total }} & =(0.0696+0.0328) F=0.1024 F \\
F & =\frac{16.5}{0.1024}=161 \mathrm{lbf} \text { Ans }
\end{aligned}
$$

8-9 $d_{m}=40-3=37 \mathrm{~mm}, l=2(6)=12 \mathrm{~mm}$
From Eq. (8-1) and Eq. (8-6)

$$
\begin{aligned}
T_{R} & =\frac{10(37)}{2}\left[\frac{12+\pi(0.10)(37)}{\pi(37)-0.10(12)}\right]+\frac{10(0.15)(60)}{2} \\
& =38.0+45=83.0 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Since $n=V / l=48 / 12=4 \mathrm{rev} / \mathrm{s}$

$$
\omega=2 \pi n=2 \pi(4)=8 \pi \mathrm{rad} / \mathrm{s}
$$

so the power is

$$
H=T \omega=83.0(8 \pi)=2086 \mathrm{~W} \quad \text { Ans. }
$$

8-10

(a) $d_{m}=36-3=33 \mathrm{~mm}, l=p=6 \mathrm{~mm}$

From Eqs. (8-1) and (8-6)

$$
\begin{aligned}
T & =\frac{33 F}{2}\left[\frac{6+\pi(0.14)(33)}{\pi(33)-0.14(6)}\right]+\frac{0.09(90) F}{2} \\
& =(3.292+4.050) F=7.34 F \mathrm{~N} \cdot \mathrm{~m} \\
\omega & =2 \pi n=2 \pi(1)=2 \pi \mathrm{rad} / \mathrm{s} \\
H & =T \omega \\
T & =\frac{H}{\omega}=\frac{3000}{2 \pi}=477 \mathrm{~N} \cdot \mathrm{~m} \\
F & =\frac{477}{7.34}=65.0 \mathrm{kN} \quad \text { Ans. }
\end{aligned}
$$

(b) $e=\frac{F l}{2 \pi T}=\frac{65.0(6)}{2 \pi(477)}=0.130 \quad$ Ans.

8-11

(a) $L_{T}=2 D+\frac{1}{4}=2(0.5)+0.25=1.25$ in Ans.
(b) From Table A-32 the washer thickness is 0.109 in . Thus,

$$
l=0.5+0.5+0.109=1.109 \text { in Ans. }
$$

(c) From Table A-31, $H=\frac{7}{16}=0.4375$ in Ans.
(d) $l+H=1.109+0.4375=1.5465$ in This would be rounded to 1.75 in per Table A-17. The bolt is long enough. Ans.
(e) $l_{d}=L-L_{T}=1.75-1.25=0.500$ in Ans.
$l_{t}=l-l_{d}=1.109-0.500=0.609$ in Ans.
These lengths are needed to estimate bolt spring rate k_{b}.
Note: In an analysis problem, you need not know the fastener's length at the outset, although you can certainly check, if appropriate.

8-12

(a) $L_{T}=2 D+6=2(14)+6=34 \mathrm{~mm}$ Ans.
(b) From Table A-33, the maximum washer thickness is 3.5 mm . Thus, the grip is, $l=14+14+3.5=31.5 \mathrm{~mm}$ Ans.
(c) From Table A-31, $H=12.8 \mathrm{~mm}$
(d) $l+H=31.5+12.8=44.3 \mathrm{~mm}$

Adding one or two threads and rounding up to $L=50 \mathrm{~mm}$. The bolt is long enough. Ans.
(e) $l_{d}=L-L_{T}=50-34=16 \mathrm{~mm}$ Ans.
$l_{t}=l-l_{d}=31.5-16=15.5 \mathrm{~mm}$ Ans.
These lengths are needed to estimate the bolt spring rate k_{b}.

8-13
(a) $L_{T}=2 D+\frac{1}{4}=2(0.5)+0.25=1.25$ in Ans.
(b) $l^{\prime}>h+\frac{d}{2}=t_{1}+\frac{d}{2}=0.875+\frac{0.5}{2}=1.125$ in Ans.
(c) $L>h+1.5 d=t_{1}+1.5 d=0.875+1.5(0.5)=1.625$ in

From Table A-17, this rounds to 1.75 in. The cap screw is long enough. Ans.
(d) $l_{d}=L-L_{T}=1.75-1.25=0.500$ in Ans.
$l_{t}=l^{\prime}-l_{d}=1.125-0.5=0.625$ in Ans.

8-14

(a) $L_{T}=2(12)+6=30 \mathrm{~mm}$ Ans.
(b) $l^{\prime}=h+\frac{d}{2}=t_{1}+\frac{d}{2}=20+\frac{12}{2}=26 \mathrm{~mm} \quad$ Ans.
(c) $L>h+1.5 d=t_{1}+1.5 d=20+1.5(12)=38 \mathrm{~mm}$

This rounds to 40 mm (Table A-17). The fastener is long enough. Ans.
(d) $l_{d}=L-L_{T}=40-30=10 \mathrm{~mm}$ Ans.
$l_{T}=l^{\prime}-l_{d}=26-10=16 \mathrm{~mm}$ Ans.

8-15
(a)

$$
\begin{aligned}
A_{d} & =0.7854(0.75)^{2}=0.442 \mathrm{in}^{2} \\
A_{\text {tube }} & =0.7854\left(1.125^{2}-0.75^{2}\right)=0.552 \mathrm{in}^{2} \\
k_{b} & =\frac{A_{d} E}{\text { grip }}=\frac{0.442(30)\left(10^{6}\right)}{13}=1.02\left(10^{6}\right) \mathrm{lbf} / \mathrm{in} \quad \text { Ans } . \\
k_{m} & =\frac{A_{\text {tube }} E}{13}=\frac{0.552(30)\left(10^{6}\right)}{13}=1.27\left(10^{6}\right) \mathrm{lbf} / \mathrm{in} \quad \text { Ans. } \\
C & =\frac{1.02}{1.02+1.27}=0.445 \quad \text { Ans. }
\end{aligned}
$$

(b)

$$
\begin{aligned}
\delta & =\frac{1}{16} \cdot \frac{1}{3}=\frac{1}{48}=0.02083 \text { in } \\
\left|\delta_{b}\right| & =\left(\frac{|P| l}{A E}\right)_{b}=\frac{(13-0.02083)}{0.442(30)\left(10^{6}\right)}|P|=9.79\left(10^{-7}\right)|P| \text { in } \\
\left|\delta_{m}\right| & =\left(\frac{|P| l}{A E}\right)_{m}=\frac{|P|(13)}{0.552(30)\left(10^{6}\right)}=7.85\left(10^{-7}\right)|P| \text { in } \\
\left|\delta_{b}\right| & +\left|\delta_{m}\right|=\delta=0.02083 \\
9.79 & \left(10^{-7}\right)|P|+7.85\left(10^{-7}\right)|P|=0.02083 \\
F_{i} & =|P|=\frac{0.02083}{9.79\left(10^{-7}\right)+7.85\left(10^{-7}\right)}=11810 \mathrm{lbf} \text { Ans. }
\end{aligned}
$$

(c) At opening load P_{0}

$$
\begin{aligned}
9.79\left(10^{-7}\right) P_{0} & =0.02083 \\
P_{0} & =\frac{0.02083}{9.79\left(10^{-7}\right)}=21280 \mathrm{lbf} \quad \text { Ans. }
\end{aligned}
$$

As a check use $F_{i}=(1-C) P_{0}$

$$
P_{0}=\frac{F_{i}}{1-C}=\frac{11810}{1-0.445}=21280 \mathrm{lbf}
$$

8-16 The movement is known at one location when the nut is free to turn

$$
\delta=p t=t / N
$$

Letting N_{t} represent the turn of the nut from snug tight, $N_{t}=\theta / 360^{\circ}$ and $\delta=N_{t} / N$.
The elongation of the bolt δ_{b} is

$$
\delta_{b}=\frac{F_{i}}{k_{b}}
$$

The advance of the nut along the bolt is the algebraic sum of $\left|\delta_{b}\right|$ and $\left|\delta_{m}\right|$

$$
\begin{aligned}
&\left|\delta_{b}\right|+\left|\delta_{m}\right|=\frac{N_{t}}{N} \\
& \frac{F_{i}}{k_{b}}+\frac{F_{i}}{k_{m}}=\frac{N_{t}}{N} \\
& N_{t}=N F_{i}\left[\frac{1}{k_{b}}+\frac{1}{k_{m}}\right]=\left(\frac{k_{b}+k_{m}}{k_{b} k_{m}}\right) F_{i} N=\frac{\theta}{360^{\circ}} \quad \text { Ans. }
\end{aligned}
$$

As a check invert Prob. 8-15. What Turn-of-Nut will induce $F_{i}=11808 \mathrm{lbf}$?

$$
\begin{aligned}
N_{t} & =16(11808)\left(\frac{1}{1.02\left(10^{6}\right)}+\frac{1}{1.27\left(10^{6}\right)}\right) \\
& =0.334 \text { turns } \doteq 1 / 3 \text { turn } \quad(\text { checks })
\end{aligned}
$$

The relationship between the Turn-of-Nut method and the Torque Wrench method is as follows.

$$
\begin{aligned}
N_{t} & =\left(\frac{k_{b}+k_{m}}{k_{b} k_{m}}\right) F_{i} N & & \text { (Turn-of-Nut) } \\
T & =K F_{i} d & & \text { (Torque Wrench) }
\end{aligned}
$$

Eliminate F_{i}

$$
N_{t}=\left(\frac{k_{b}+k_{m}}{k_{b} k_{m}}\right) \frac{N T}{K d}=\frac{\theta}{360^{\circ}} \quad \text { Ans. }
$$

8-17
(a) From Ex. 8-4, $F_{i}=14.4$ kip, $k_{b}=5.21\left(10^{6}\right) \mathrm{lbf} / \mathrm{in}, k_{m}=8.95\left(10^{6}\right) \mathrm{lbf} / \mathrm{in}$

Eq. (8-27): $\quad T=k F_{i} d=0.2(14.4)\left(10^{3}\right)(5 / 8)=1800 \mathrm{lbf} \cdot$ in Ans.
From Prob. 8-16,

$$
\begin{aligned}
t & =N F_{i}\left(\frac{1}{k_{b}}+\frac{1}{k_{m}}\right)=16(14.4)\left(10^{3}\right)\left[\frac{1}{5.21\left(10^{6}\right)}+\frac{1}{8.95\left(10^{6}\right)}\right] \\
& =0.132 \text { turns }=47.5^{\circ} \quad \text { Ans. }
\end{aligned}
$$

Bolt group is $(1.5) /(5 / 8)=2.4$ diameters. Answer is lower than $\mathrm{RB} \& \mathrm{~W}$ recommendations.
(b) From Ex. 8-5, $F_{i}=14.4$ kip, $k_{b}=6.78 \mathrm{Mlbf} / \mathrm{in}$, and $k_{m}=17.4 \mathrm{Mlbf} / \mathrm{in}$

$$
\begin{aligned}
T & =0.2(14.4)\left(10^{3}\right)(5 / 8)=1800 \mathrm{lbf} \cdot \text { in Ans. } \\
t & =11(14.4)\left(10^{3}\right)\left[\frac{1}{6.78\left(10^{6}\right)}+\frac{1}{17.4\left(10^{6}\right)}\right] \\
& =0.0325=11.7^{\circ} \quad \text { Ans. Again lower than RB\&W. }
\end{aligned}
$$

8-18 From Eq. (8-22) for the conical frusta, with $d / l=0.5$

$$
\left.\frac{k_{m}}{E d}\right|_{(d / l)=0.5}=\frac{0.5774 \pi}{2 \ln \{5[0.5774+0.5(0.5)] /[0.5774+2.5(0.5)]\}}=1.11
$$

Eq. (8-23), from the Wileman et al. finite element study, using the general expression,

$$
\left.\frac{k_{m}}{E d}\right|_{(d / l)=0.5}=0.78952 \exp [0.62914(0.5)]=1.08
$$

8-19 For cast iron, from Table 8-8: $A=0.77871, B=0.61616, E=14.5 \mathrm{Mpsi}$

$$
k_{m}=14.5\left(10^{6}\right)(0.625)(0.77871) \exp \left(0.61616 \frac{0.625}{1.5}\right)=9.12\left(10^{6}\right) \mathrm{lbf} / \mathrm{in}
$$

This member's spring rate applies to both members. We need k_{m} for the upper member which represents half of the joint.

$$
k_{c i}=2 k_{m}=2\left[9.12\left(10^{6}\right)\right]=18.24\left(10^{6}\right) \mathrm{lbf} / \mathrm{in}
$$

For steel from Table 8-8: $A=0.78715, B=0.62873, E=30 \mathrm{Mpsi}$

$$
\begin{gathered}
k_{m}=30\left(10^{6}\right)(0.625)(0.78715) \exp \left(0.62873 \frac{0.625}{1.5}\right)=19.18\left(10^{6}\right) \mathrm{lbf} / \mathrm{in} \\
k_{\text {steel }}=2 k_{m}=2(19.18)\left(10^{6}\right)=38.36\left(10^{6}\right) \mathrm{lbf} / \mathrm{in}
\end{gathered}
$$

For springs in series

$$
\begin{gathered}
\frac{1}{k_{m}}=\frac{1}{k_{c i}}+\frac{1}{k_{\text {steel }}}=\frac{1}{18.24\left(10^{6}\right)}+\frac{1}{38.36\left(10^{6}\right)} \\
k_{m}=12.4\left(10^{6}\right) \mathrm{lbf} / \mathrm{in} \text { Ans. }
\end{gathered}
$$

8-20 The external tensile load per bolt is

$$
P=\frac{1}{10}\left(\frac{\pi}{4}\right)(150)^{2}(6)\left(10^{-3}\right)=10.6 \mathrm{kN}
$$

Also, $l=40 \mathrm{~mm}$ and from Table A-31, for $d=12 \mathrm{~mm}, H=10.8 \mathrm{~mm}$. No washer is specified.

Table A-17:

$$
\begin{array}{r}
L_{T}=2 D+6=2(12)+6=30 \mathrm{~mm} \\
\\
l+H=40+10.8=50.8 \mathrm{~mm}
\end{array}
$$

$$
\begin{aligned}
L & =60 \mathrm{~mm} \\
l_{d} & =60-30=30 \mathrm{~mm} \\
l_{t} & =45-30=15 \mathrm{~mm} \\
A_{d} & =\frac{\pi(12)^{2}}{4}=113 \mathrm{~mm}^{2}
\end{aligned}
$$

Table 8-1:

$$
A_{t}=84.3 \mathrm{~mm}^{2}
$$

Eq. (8-17):

$$
k_{b}=\frac{113(84.3)(207)}{113(15)+84.3(30)}=466.8 \mathrm{MN} / \mathrm{m}
$$

Steel: Using Eq. (8-23) for $A=0.78715, B=0.62873$ and $E=207 \mathrm{GPa}$

Eq. (8-23): $\quad k_{m}=207(12)(0.78715) \exp [(0.62873)(12 / 40)]=2361 \mathrm{MN} / \mathrm{m}$

$$
k_{s}=2 k_{m}=4722 \mathrm{MN} / \mathrm{m}
$$

Cast iron: $A=0.77871, B=0.61616, E=100 \mathrm{GPa}$

$$
\begin{aligned}
k_{m} & =100(12)(0.77871) \exp [(0.61616)(12 / 40)]=1124 \mathrm{MN} / \mathrm{m} \\
k_{c i} & =2 k_{m}=2248 \mathrm{MN} / \mathrm{m} \\
\frac{1}{k_{m}} & =\frac{1}{k_{s}}+\frac{1}{k_{c i}} \Rightarrow k_{m}=1523 \mathrm{MN} / \mathrm{m} \\
C & =\frac{466.8}{466.8+1523}=0.2346
\end{aligned}
$$

Table 8-1: $A_{t}=84.3 \mathrm{~mm}^{2}$, Table $8-11, S_{p}=600 \mathrm{MPa}$
Eqs. (8-30) and (8-31): $\quad F_{i}=0.75(84.3)(600)\left(10^{-3}\right)=37.9 \mathrm{kN}$
Eq. (8-28):

$$
n=\frac{S_{p} A_{t}-F_{i}}{C P}=\frac{600\left(10^{-3}\right)(84.3)-37.9}{0.2346(10.6)}=5.1 \quad \text { Ans. }
$$

8-21 Computer programs will vary.

8-22 $D_{3}=150 \mathrm{~mm}, A=100 \mathrm{~mm}, B=200 \mathrm{~mm}, C=300 \mathrm{~mm}, D=20 \mathrm{~mm}, E=25 \mathrm{~mm}$. ISO 8.8 bolts: $d=12 \mathrm{~mm}, p=1.75 \mathrm{~mm}$, coarse pitch of $p=6 \mathrm{MPa}$.

$$
\begin{aligned}
P & =\frac{1}{10}\left(\frac{\pi}{4}\right)\left(150^{2}\right)(6)\left(10^{-3}\right)=10.6 \mathrm{kN} / \mathrm{bolt} \\
l & =D+E=20+25=45 \mathrm{~mm} \\
L_{T} & =2 D+6=2(12)+6=30 \mathrm{~mm}
\end{aligned}
$$

Table A-31: $H=10.8 \mathrm{~mm}$

$$
l+H=45+10.8=55.8 \mathrm{~mm}
$$

Table A-17: $L=60 \mathrm{~mm}$

$$
l_{d}=60-30=30 \mathrm{~mm}, \quad l_{t}=45-30=15 \mathrm{~mm}, \quad A_{d}=\pi\left(12^{2} / 4\right)=113 \mathrm{~mm}^{2}
$$

Table 8-1: $A_{t}=84.3 \mathrm{~mm}^{2}$

Eq. (8-17):

$$
k_{b}=\frac{113(84.3)(207)}{113(15)+84.3(30)}=466.8 \mathrm{MN} / \mathrm{m}
$$

There are three frusta: $d_{m}=1.5(12)=18 \mathrm{~mm}$

$$
D_{1}=\left(20 \tan 30^{\circ}\right) 2+d_{w}=\left(20 \tan 30^{\circ}\right) 2+18=41.09 \mathrm{~mm}
$$

Upper Frustum: $\quad t=20 \mathrm{~mm}, E=207 \mathrm{GPa}, D=1.5(12)=18 \mathrm{~mm}$
Eq. (8-20):

$$
k_{1}=4470 \mathrm{MN} / \mathrm{m}
$$

Central Frustum: $\quad t=2.5 \mathrm{~mm}, D=41.09 \mathrm{~mm}, E=100 \mathrm{GPa}$ (Table A-5) $\Rightarrow k_{2}=$ $52230 \mathrm{MN} / \mathrm{m}$
Lower Frustum: $\quad t=22.5 \mathrm{~mm}, E=100 \mathrm{GPa}, D=18 \mathrm{~mm} \quad \Rightarrow \quad k_{3}=2074 \mathrm{MN} / \mathrm{m}$
From Eq. (8-18): $\quad k_{m}=[(1 / 4470)+(1 / 52230)+(1 / 2074)]^{-1}=1379 \mathrm{MN} / \mathrm{m}$
Eq. (e), p. 421:

$$
C=\frac{466.8}{466.8+1379}=0.253
$$

Eqs. (8-30) and (8-31):

$$
F_{i}=K F_{p}=K A_{t} S_{p}=0.75(84.3)(600)\left(10^{-3}\right)=37.9 \mathrm{kN}
$$

Eq. (8-28): $\quad n=\frac{S_{p} A_{t}-F_{i}}{C P}=\frac{600\left(10^{-3}\right)(84.3)-37.9}{0.253(10.6)}=4.73 \quad$ Ans.

8-23 $\quad P=\frac{1}{8}\left(\frac{\pi}{4}\right)\left(120^{2}\right)(6)\left(10^{-3}\right)=8.48 \mathrm{kN}$
From Fig. 8-21, $t_{1}=h=20 \mathrm{~mm}$ and $t_{2}=25 \mathrm{~mm}$

$$
\begin{aligned}
& l=20+12 / 2=26 \mathrm{~mm} \\
& t=0 \quad(\text { no washer }), \quad L_{T}=2(12)+6=30 \mathrm{~mm} \\
& \quad L>h+1.5 d=20+1.5(12)=38 \mathrm{~mm}
\end{aligned}
$$

Use 40 mm cap screws.

$$
\begin{aligned}
l_{d} & =40-30=10 \mathrm{~mm} \\
l_{t} & =l-l_{d}=26-10=16 \mathrm{~mm} \\
A_{d} & =113 \mathrm{~mm}^{2}, \quad A_{t}=84.3 \mathrm{~mm}^{2}
\end{aligned}
$$

Eq. (8-17):

$$
\begin{aligned}
k_{b} & =\frac{113(84.3)(207)}{113(16)+84.3(10)} \\
& =744 \mathrm{MN} / \mathrm{m} \quad \text { Ans } \\
d_{w} & =1.5(12)=18 \mathrm{~mm} \\
D & =18+2(6)(\tan 30)=24.9 \mathrm{~mm}
\end{aligned}
$$

From Eq. (8-20):
Top frustum: $\quad D=18, t=13, E=207 \mathrm{GPa} \quad \Rightarrow \quad k_{1}=5316 \mathrm{MN} / \mathrm{m}$
Mid-frustum: $\quad t=7, E=207 \mathrm{GPa}, D=24.9 \mathrm{~mm} \quad \Rightarrow \quad k_{2}=15620 \mathrm{MN} / \mathrm{m}$
Bottom frustum: $\quad D=18, t=6, E=100 \mathrm{GPa} \Rightarrow k_{3}=3887 \mathrm{MN} / \mathrm{m}$

$$
\begin{aligned}
k_{m} & =\frac{1}{(1 / 5316)+(1 / 55620)+(1 / 3887)}=2158 \mathrm{MN} / \mathrm{m} \quad \text { Ans } . \\
C & =\frac{744}{744+2158}=0.256 \mathrm{Ans} .
\end{aligned}
$$

From Prob. 8-22, $F_{i}=37.9 \mathrm{kN}$

$$
n=\frac{S_{p} A_{t}-F_{i}}{C P}=\frac{600(0.0843)-37.9}{0.256(8.48)}=5.84 \quad \text { Ans. }
$$

8-24 Calculation of bolt stiffness:

$$
\begin{aligned}
H & =7 / 16 \mathrm{in} \\
L_{T} & =2(1 / 2)+1 / 4=11 / 4 \mathrm{in} \\
l & =1 / 2+5 / 8+0.095=1.22 \mathrm{in} \\
L & >1.125+7 / 16+0.095=1.66 \mathrm{in}
\end{aligned}
$$

Use $L=1.75$ in

$$
\begin{aligned}
l_{d} & =L-L_{T}=1.75-1.25=0.500 \mathrm{in} \\
l_{t} & =1.125+0.095-0.500=0.72 \mathrm{in}
\end{aligned}
$$

$$
A_{d}=\pi\left(0.50^{2}\right) / 4=0.1963 \mathrm{in}^{2}
$$

$$
A_{t}=0.1419 \mathrm{in}^{2}(\mathrm{UNC})
$$

$$
k_{t}=\frac{A_{t} E}{l_{t}}=\frac{0.1419(30)}{0.72}=5.9125 \mathrm{Mlbf} / \mathrm{in}
$$

$$
k_{d}=\frac{A_{d} E}{l_{d}}=\frac{0.1963(30)}{0.500}=11.778 \mathrm{Mlbf} / \mathrm{in}
$$

$$
k_{b}=\frac{1}{(1 / 5.9125)+(1 / 11.778)}=3.936 \mathrm{Mlbf} / \mathrm{in} \text { Ans } .
$$

Member stiffness for four frusta and joint constant C using Eqs. (8-20) and (e).
Top frustum:
$D=0.75, t=0.5, d=0.5, E=30 \quad \Rightarrow \quad k_{1}=33.30 \mathrm{Mlbf} / \mathrm{in}$
2nd frustum: $\quad D=1.327, t=0.11, d=0.5, E=14.5 \quad \Rightarrow \quad k_{2}=173.8 \mathrm{Mlbf} / \mathrm{in}$
3rd frustum: $\quad D=0.860, t=0.515, E=14.5 \quad \Rightarrow \quad k_{3}=21.47 \mathrm{Mlbf} / \mathrm{in}$
Fourth frustum: $\quad D=0.75, t=0.095, d=0.5, E=30 \quad \Rightarrow \quad k_{4}=97.27 \mathrm{Mlbf} / \mathrm{in}$

$$
\begin{aligned}
k_{m} & =\left(\sum_{i=1}^{4} 1 / k_{i}\right)^{-1}=10.79 \mathrm{Mlbf} / \mathrm{in} \text { Ans. } \\
C & =3.94 /(3.94+10.79)=0.267 \quad \text { Ans. }
\end{aligned}
$$

8-25

$$
k_{b}=\frac{A_{t} E}{l}=\frac{0.1419(30)}{0.845}=5.04 \mathrm{Mlbf} / \mathrm{in} \quad \text { Ans } .
$$

From Fig. 8-21,

$$
\begin{aligned}
h & =\frac{1}{2}+0.095=0.595 \text { in } \\
l & =h+\frac{d}{2}=0.595+\frac{0.5}{2}=0.845 \\
D_{1} & =0.75+0.845 \tan 30^{\circ}=1.238 \mathrm{in} \\
l / 2 & =0.845 / 2=0.4225 \mathrm{in}
\end{aligned}
$$

From Eq. (8-20):
Frustum 1: $\quad D=0.75, t=0.4225 \mathrm{in}, d=0.5 \mathrm{in}, E=30 \mathrm{Mpsi} \Rightarrow k_{1}=36.14 \mathrm{Mlbf} / \mathrm{in}$
Frustum 2: $\quad D=1.018$ in , $t=0.1725 \mathrm{in}, E=70 \mathrm{Mpsi}, d=0.5 \mathrm{in} \Rightarrow k_{2}=134.6 \mathrm{Mlbf} / \mathrm{in}$
Frustum 3: $\quad D=0.75, t=0.25 \mathrm{in}, d=0.5 \mathrm{in}, E=14.5 \mathrm{Mpsi} \Rightarrow k_{3}=23.49 \mathrm{Mlbf} / \mathrm{in}$

$$
\begin{gathered}
k_{m}=\frac{1}{(1 / 36.14)+(1 / 134.6)+(1 / 23.49)}=12.87 \mathrm{Mlbf} / \mathrm{in} \text { Ans. } \\
C=\frac{5.04}{5.04+12.87}=0.281 \text { Ans. }
\end{gathered}
$$

8-26 Refer to Prob. 8-24 and its solution. Additional information: $A=3.5 \mathrm{in}, D_{s}=4.25 \mathrm{in}$, static pressure $1500 \mathrm{psi}, D_{b}=6 \mathrm{in}, C$ (joint constant) $=0.267$, ten SAE grade 5 bolts.

$$
P=\frac{1}{10} \frac{\pi\left(4.25^{2}\right)}{4}(1500)=2128 \mathrm{lbf}
$$

From Tables 8-2 and 8-9,

$$
\begin{aligned}
A_{t} & =0.1419 \mathrm{in}^{2} \\
S_{p} & =85000 \mathrm{psi} \\
F_{i} & =0.75(0.1419)(85)=9.046 \mathrm{kip}
\end{aligned}
$$

From Eq. (8-28),

$$
n=\frac{S_{p} A_{t}-F_{i}}{C P}=\frac{85(0.1419)-9.046}{0.267(2.128)}=5.31 \quad \text { Ans. }
$$

8-27 From Fig. 8-21, $t_{1}=0.25$ in

$$
\begin{aligned}
h & =0.25+0.065=0.315 \mathrm{in} \\
l & =h+(d / 2)=0.315+(3 / 16)=0.5025 \mathrm{in} \\
D_{1} & =1.5(0.375)+0.577(0.5025)=0.8524 \mathrm{in} \\
D_{2} & =1.5(0.375)=0.5625 \mathrm{in} \\
l / 2 & =0.5025 / 2=0.25125 \mathrm{in}
\end{aligned}
$$

Frustum 1: Washer

$$
\begin{aligned}
E & =30 \mathrm{Mpsi}, \quad t=0.065 \mathrm{in}, \quad D=0.5625 \mathrm{in} \\
k & =78.57 \mathrm{Mlbf} / \mathrm{in} \quad \text { (by computer) }
\end{aligned}
$$

Frustum 2: Cap portion

$$
E=14 \mathrm{Mpsi}, \quad t=0.18625 \mathrm{in}
$$

$$
D=0.5625+2(0.065)(0.577)=0.6375 \mathrm{in}
$$

$$
k=23.46 \mathrm{Mlbf} / \mathrm{in} \quad(\text { by computer })
$$

Frustum 3: Frame and Cap

$$
\begin{aligned}
E & =14 \mathrm{Mpsi}, \quad t=0.25125 \mathrm{in}, \quad D=0.5625 \mathrm{in} \\
k & =14.31 \mathrm{Mlbf} / \mathrm{in} \quad(\text { by computer) } \\
k_{m} & =\frac{1}{(1 / 78.57)+(1 / 23.46)+(1 / 14.31)}=7.99 \mathrm{Mlbf} / \mathrm{in} \quad \text { Ans. }
\end{aligned}
$$

For the bolt, $L_{T}=2(3 / 8)+(1 / 4)=1 \mathrm{in}$. So the bolt is threaded all the way. Since $A_{t}=0.0775 \mathrm{in}^{2}$

$$
k_{b}=\frac{0.0775(30)}{0.5025}=4.63 \mathrm{Mlbf} / \mathrm{in} \quad \text { Ans }
$$

8-28

(a) $F_{b}^{\prime}=R F_{b, \text { max }}^{\prime} \sin \theta$

Half of the external moment is contributed by the line load in the interval $0 \leq \theta \leq \pi$.

$$
\begin{aligned}
\frac{M}{2} & =\int_{0}^{\pi} F_{b}^{\prime} R^{2} \sin \theta d \theta=\int_{0}^{\pi} F_{b, \max }^{\prime} R^{2} \sin ^{2} \theta d \theta \\
\frac{M}{2} & =\frac{\pi}{2} F_{b, \max }^{\prime} R^{2}
\end{aligned}
$$

from which $F_{b, \text { max }}^{\prime}=\frac{M}{\pi R^{2}}$

$$
F_{\max }=\int_{\phi_{1}}^{\phi_{2}} F_{b}^{\prime} R \sin \theta d \theta=\frac{M}{\pi R^{2}} \int_{\phi_{1}}^{\phi_{2}} R \sin \theta d \theta=\frac{M}{\pi R}\left(\cos \phi_{1}-\cos \phi_{2}\right)
$$

Noting $\phi_{1}=75^{\circ}, \phi_{2}=105^{\circ}$

$$
F_{\max }=\frac{12000}{\pi(8 / 2)}\left(\cos 75^{\circ}-\cos 105^{\circ}\right)=494 \mathrm{lbf} \quad \text { Ans }
$$

(b)

$$
\begin{gathered}
F_{\max }=F_{b, \max }^{\prime} R \Delta \phi=\frac{M}{\pi R^{2}}(R)\left(\frac{2 \pi}{N}\right)=\frac{2 M}{R N} \\
F_{\max }=\frac{2(12000)}{(8 / 2)(12)}=500 \mathrm{lbf} \text { Ans }
\end{gathered}
$$

(c) $F=F_{\max } \sin \theta$

$$
M=2 F_{\max } R\left[(1) \sin ^{2} 90^{\circ}+2 \sin ^{2} 60^{\circ}+2 \sin ^{2} 30^{\circ}+(1) \sin ^{2}(0)\right]=6 F_{\max } R
$$

from which

$$
F_{\max }=\frac{M}{6 R}=\frac{12000}{6(8 / 2)}=500 \mathrm{lbf} \quad \text { Ans. }
$$

The simple general equation resulted from part (b)

$$
F_{\max }=\frac{2 M}{R N}
$$

8-29
(a) Table 8-11:

$$
S_{p}=600 \mathrm{MPa}
$$

Eq. (8-30): $\quad F_{i}=0.9 A_{t} S_{p}=0.9(245)(600)\left(10^{-3}\right)=132.3 \mathrm{kN}$
Table (8-15):

$$
K=0.18
$$

Eq. (8-27)

$$
T=0.18(132.3)(20)=476 \mathrm{~N} \cdot \mathrm{~m} \quad \text { Ans } .
$$

(b) Washers: $t=3.4 \mathrm{~mm}, d=20 \mathrm{~mm}, D=30 \mathrm{~mm}, E=207 \mathrm{GPa} \Rightarrow k_{1}=42175 \mathrm{MN} / \mathrm{m}$ Cast iron: $t=20 \mathrm{~mm}, d=20 \mathrm{~mm}, D=30+2(3.4) \tan 30^{\circ}=33.93 \mathrm{~mm}$, $E=135 \mathrm{GPa} \quad \Rightarrow \quad k_{2}=7885 \mathrm{MN} / \mathrm{m}$
Steel: $t=20 \mathrm{~mm}, d=20 \mathrm{~mm}, D=33.93 \mathrm{~mm}, E=207 \mathrm{GPa} \Rightarrow k_{3}=12090 \mathrm{MN} / \mathrm{m}$

$$
k_{m}=(2 / 42175+1 / 7885+1 / 12090)^{-1}=3892 \mathrm{MN} / \mathrm{m}
$$

Bolt: $l=46.8 \mathrm{~mm}$. Nut: $H=18 \mathrm{~mm} . L>46.8+18=64.8 \mathrm{~mm}$. Use $L=80 \mathrm{~mm}$.

$$
\begin{aligned}
L_{T} & =2(20)+6=46 \mathrm{~mm}, l_{d}=80-46=34 \mathrm{~mm}, l_{t}=46.8-34=12.8 \mathrm{~mm} \\
A_{t} & =245 \mathrm{~mm}^{2}, \quad A_{d}=\pi 20^{2} / 4=314.2 \mathrm{~mm}^{2} \\
k_{b} & =\frac{A_{d} A_{t} E}{A_{d} l_{t}+A_{t} l_{d}}=\frac{314.2(245)(207)}{314.2(12.8)+245(34)}=1290 \mathrm{MN} / \mathrm{m} \\
C & =1290 /(1290+3892)=0.2489, \quad S_{p}=600 \mathrm{MPa}, \quad F_{i}=132.3 \mathrm{kN} \\
n & =\frac{S_{p} A_{t}-F_{i}}{C(P / N)}=\frac{600(0.245)-132.3}{0.2489(15 / 4)}=15.7 \mathrm{Ans} .
\end{aligned}
$$

Bolts are a bit oversized for the load.

8-30 (a) ISO M 20×2.5 grade 8.8 coarse pitch bolts, lubricated.
Table 8-2 $\quad A_{t}=245 \mathrm{~mm}^{2}$
Table 8-11 $\quad S_{p}=600 \mathrm{MPa}$

$$
\begin{aligned}
A_{d} & =\pi(20)^{2} / 4=314.2 \mathrm{~mm}^{2} \\
F_{p} & =245(0.600)=147 \mathrm{kN} \\
F_{i} & =0.90 F_{p}=0.90(147)=132.3 \mathrm{kN} \\
T & =0.18(132.3)(20)=476 \mathrm{~N} \cdot \mathrm{~m} \quad \text { Ans. }
\end{aligned}
$$

(b) $L \geq l+H=48+18=66 \mathrm{~mm}$. Therefore, set $L=80 \mathrm{~mm}$ per Table A-17.

$$
\begin{aligned}
L_{T} & =2 D+6=2(20)+6=46 \mathrm{~mm} \\
l_{d} & =L-L_{T}=80-46=34 \mathrm{~mm} \\
l_{t} & =l-l_{d}=48-34=14 \mathrm{~mm}
\end{aligned}
$$

$$
k_{b}=\frac{A_{d} A_{t} E}{A_{d} l_{t}+A_{t} l_{d}}=\frac{314.2(245)(207)}{314.2(14)+245(34)}=1251.9 \mathrm{MN} / \mathrm{m}
$$

Use Wileman et al.
Eq. (8-23)

$$
\begin{aligned}
A & =0.78715, \quad B=0.62873 \\
\frac{k_{m}}{E d} & =A \exp \left(\frac{B d}{L_{G}}\right)=0.78715 \exp \left[0.62873\left(\frac{20}{48}\right)\right]=1.0229 \\
k_{m} & =1.0229(207)(20)=4235 \mathrm{MN} / \mathrm{m} \\
C & =\frac{1251.9}{1251.9+4235}=0.228
\end{aligned}
$$

Bolts carry 0.228 of the external load; members carry 0.772 of the external load. Ans. Thus, the actual loads are

$$
\begin{aligned}
F_{b} & =C P+F_{i}=0.228(20)+132.3=136.9 \mathrm{kN} \\
F_{m} & =(1-C) P-F_{i}=(1-0.228) 20-132.3=-116.9 \mathrm{kN}
\end{aligned}
$$

8-31 Given $p_{\max }=6 \mathrm{MPa}, p_{\min }=0$ and from Prob. $8-20$ solution, $C=0.2346, F_{i}=37.9 \mathrm{kN}$, $A_{t}=84.3 \mathrm{~mm}^{2}$.
For $6 \mathrm{MPa}, P=10.6 \mathrm{kN}$ per bolt

$$
\sigma_{i}=\frac{F_{i}}{A_{t}}=\frac{37.9\left(10^{3}\right)}{84.3}=450 \mathrm{MPa}
$$

Eq. (8-35):

$$
\begin{aligned}
\sigma_{a} & =\frac{C P}{2 A_{t}}=\frac{0.2346(10.6)\left(10^{3}\right)}{2(84.3)}=14.75 \mathrm{MPa} \\
\sigma_{m} & =\sigma_{a}+\sigma_{i}=14.75+450=464.8 \mathrm{MPa}
\end{aligned}
$$

(a) Goodman Eq. (8-40) for 8.8 bolts with $S_{e}=129 \mathrm{MPa}, S_{u t}=830 \mathrm{MPa}$

$$
\begin{gathered}
S_{a}=\frac{S_{e}\left(S_{u t}-\sigma_{i}\right)}{S_{u t}+S_{e}}=\frac{129(830-450)}{830+129}=51.12 \mathrm{MPa} \\
n_{f}=\frac{S_{a}}{\sigma_{a}}=\frac{51.12}{14.75}=3.47 \text { Ans. }
\end{gathered}
$$

(b) Gerber Eq. (8-42)

$$
\begin{aligned}
S_{a} & =\frac{1}{2 S_{e}}\left[S_{u t} \sqrt{S_{u t}^{2}+4 S_{e}\left(S_{e}+\sigma_{i}\right)}-S_{u t}^{2}-2 \sigma_{i} S_{e}\right] \\
& =\frac{1}{2(129)}\left[830 \sqrt{830^{2}+4(129)(129+450)}-830^{2}-2(450)(129)\right] \\
& =76.99 \mathrm{MPa}
\end{aligned}
$$

$$
n_{f}=\frac{76.99}{14.75}=5.22 \quad \text { Ans. }
$$

(c) ASME-elliptic Eq. (8-43) with $S_{p}=600 \mathrm{MPa}$

$$
\begin{gathered}
S_{a}=\frac{S_{e}}{S_{p}^{2}+S_{e}^{2}}\left(S_{p} \sqrt{S_{p}^{2}+S_{e}^{2}-\sigma_{i}^{2}}-\sigma_{i} S_{e}\right) \\
=\frac{129}{600^{2}+129^{2}}\left[600 \sqrt{600^{2}+129^{2}-450^{2}}-450(129)\right]=65.87 \mathrm{MPa} \\
\qquad n_{f}=\frac{65.87}{14.75}=4.47 \quad \text { Ans. }
\end{gathered}
$$

8-32

$$
P=\frac{p A}{N}=\frac{\pi D^{2} p}{4 N}=\frac{\pi\left(0.9^{2}\right)(550)}{4(36)}=9.72 \mathrm{kN} / \mathrm{bolt}
$$

Table 8-11: $\quad S_{p}=830 \mathrm{MPa}, \quad S_{u t}=1040 \mathrm{MPa}, \quad S_{y}=940 \mathrm{MPa}$
Table 8-1:

$$
\begin{aligned}
A_{t} & =58 \mathrm{~mm}^{2} \\
A_{d} & =\pi\left(10^{2}\right) / 4=78.5 \mathrm{~mm}^{2} \\
l & =D+E=20+25=45 \mathrm{~mm} \\
L_{T} & =2(10)+6=26 \mathrm{~mm}
\end{aligned}
$$

Table A-31:

$$
H=8.4 \mathrm{~mm}
$$

$$
L \geq l+H=45+8.4=53.4 \mathrm{~mm}
$$

Choose $L=60 \mathrm{~mm}$ from Table A-17

$$
\begin{aligned}
l_{d} & =L-L_{T}=60-26=34 \mathrm{~mm} \\
l_{t} & =l-l_{d}=45-34=11 \mathrm{~mm} \\
k_{b} & =\frac{A_{d} A_{t} E}{A_{d} l_{t}+A_{t} l_{d}}=\frac{78.5(58)(207)}{78.5(11)+58(34)}=332.4 \mathrm{MN} / \mathrm{m}
\end{aligned}
$$

Frustum 1: \quad Top, $E=207, t=20 \mathrm{~mm}, d=10 \mathrm{~mm}, D=15 \mathrm{~mm}$

$$
\begin{aligned}
k_{1} & =\frac{0.5774 \pi(207)(10)}{\ln \left\{\left[\frac{1.155(20)+15-10}{1.155(20)+15+10}\right]\left(\frac{15+10}{15-10}\right)\right\}} \\
& =3503 \mathrm{MN} / \mathrm{m}
\end{aligned}
$$

Frustum 2: \quad Middle, $E=96 \mathrm{GPa}, D=38.09 \mathrm{~mm}, t=2.5 \mathrm{~mm}, d=10 \mathrm{~mm}$

$$
\begin{aligned}
k_{2} & =\frac{0.5774 \pi(96)(10)}{\ln \left\{\left[\frac{1.155(2.5)+38.09-10}{1.155(2.5)+38.09+10}\right]\left(\frac{38.09+10}{38.09-10}\right)\right\}} \\
& =44044 \mathrm{MN} / \mathrm{m}
\end{aligned}
$$

could be neglected due to its small influence on k_{m}.
Frustum 3: Bottom, $E=96 \mathrm{GPa}, t=22.5 \mathrm{~mm}, d=10 \mathrm{~mm}, D=15 \mathrm{~mm}$

$$
\begin{aligned}
k_{3} & =\frac{0.5774 \pi(96)(10)}{\ln \left\{\left[\frac{1.155(22.5)+15-10}{1.155(22.5)+15+10}\right]\left(\frac{15+10}{15-10}\right)\right\}} \\
& =1567 \mathrm{MN} / \mathrm{m} \\
k_{m} & =\frac{1}{(1 / 3503)+(1 / 44044)+(1 / 1567)}=1057 \mathrm{MN} / \mathrm{m} \\
C & =\frac{332.4}{332.4+1057}=0.239 \\
F_{i} & =0.75 A_{t} S_{p}=0.75(58)(830)\left(10^{-3}\right)=36.1 \mathrm{kN}
\end{aligned}
$$

Table 8-17: $S_{e}=162 \mathrm{MPa}$

$$
\sigma_{i}=\frac{F_{i}}{A_{t}}=\frac{36.1\left(10^{3}\right)}{58}=622 \mathrm{MPa}
$$

(a) Goodman Eq. (8-40)

$$
\begin{gathered}
S_{a}=\frac{S_{e}\left(S_{u t}-\sigma_{i}\right)}{S_{u t}+S_{e}}=\frac{162(1040-622)}{1040+162}=56.34 \mathrm{MPa} \\
n_{f}=\frac{56.34}{20}=2.82 \mathrm{Ans}
\end{gathered}
$$

(b) Gerber Eq. (8-42)

$$
\begin{aligned}
S_{a} & =\frac{1}{2 S_{e}}\left[S_{u t} \sqrt{S_{u t}^{2}+4 S_{e}\left(S_{e}+\sigma_{i}\right)}-S_{u t}^{2}-2 \sigma_{i} S_{e}\right] \\
& =\frac{1}{2(162)}\left[1040 \sqrt{1040^{2}+4(162)(162+622)}-1040^{2}-2(622)(162)\right] \\
& =86.8 \mathrm{MPa}
\end{aligned}
$$

$$
\begin{aligned}
\sigma_{a}=\frac{C P}{2 A_{t}}=\frac{0.239(9.72)\left(10^{3}\right)}{2(58)} & =20 \mathrm{MPa} \\
& n_{f}=\frac{S_{a}}{\sigma_{a}}=\frac{86.8}{20}=4.34 \quad \text { Ans }
\end{aligned}
$$

(c) ASME elliptic

$$
\begin{gathered}
S_{a}=\frac{S_{e}}{S_{p}^{2}+S_{e}^{2}}\left(S_{p} \sqrt{S_{p}^{2}+S_{e}^{2}-\sigma_{i}^{2}}-\sigma_{i} S_{e}\right) \\
=\frac{162}{830^{2}+162^{2}}\left[830 \sqrt{830^{2}+162^{2}-622^{2}}-622(162)\right]=84.90 \mathrm{MPa} \\
n_{f}=\frac{84.90}{20}=4.24 \text { Ans. }
\end{gathered}
$$

8-33 Let the repeatedly-applied load be designated as P. From Table A-22, $S_{u t}=$ 93.7 kpsi. Referring to the Figure of Prob. 3-74, the following notation will be used for the radii of Section AA.

$$
r_{i}=1 \mathrm{in}, \quad r_{o}=2 \mathrm{in}, \quad r_{c}=1.5 \mathrm{in}
$$

From Table 4-5, with $R=0.5$ in

$$
\begin{aligned}
r_{n} & =\frac{0.5^{2}}{2\left(1.5-\sqrt{1.5^{2}-0.5^{2}}\right)}=1.457107 \mathrm{in} \\
e & =r_{c}-r_{n}=1.5-1.457107=0.042893 \mathrm{in} \\
c_{o} & =r_{o}-r_{n}=2-1.457109=0.542893 \mathrm{in} \\
c_{i} & =r_{n}-r_{i}=1.457107-1=0.457107 \mathrm{in} \\
A & =\pi\left(1^{2}\right) / 4=0.7854 \mathrm{in}^{2}
\end{aligned}
$$

If P is the maximum load

$$
\begin{aligned}
M & =P r_{c}=1.5 P \\
\sigma_{i} & =\frac{P}{A}\left(1+\frac{r_{c} c_{i}}{e r_{i}}\right)=\frac{P}{0.7854}\left(1+\frac{1.5(0.457)}{0.0429(1)}\right)=21.62 P \\
\sigma_{a} & =\sigma_{m}=\frac{\sigma_{i}}{2}=\frac{21.62 P}{2}=10.81 P
\end{aligned}
$$

(a) Eye: Section AA

$$
\begin{aligned}
& k_{a}=14.4(93.7)^{-0.718}=0.553 \\
& d_{e}=0.37 d=0.37(1)=0.37 \mathrm{in} \\
& k_{b}=\left(\frac{0.37}{0.30}\right)^{-0.107}=0.978 \\
& k_{c}=0.85 \\
& S_{e}^{\prime}=0.5(93.7)=46.85 \mathrm{kpsi} \\
& S_{e}=0.553(0.978)(0.85)(46.85)=21.5 \mathrm{kpsi}
\end{aligned}
$$

Since no stress concentration exists, use a load line slope of 1. From Table 7-10 for Gerber

$$
S_{a}=\frac{93.7^{2}}{2(21.5)}\left[-1+\sqrt{1+\left(\frac{2(21.5)}{93.7}\right)^{2}}\right]=20.47 \mathrm{kpsi}
$$

Note the mere 5 percent degrading of S_{e} in S_{a}

$$
n_{f}=\frac{S_{a}}{\sigma_{a}}=\frac{20.47\left(10^{3}\right)}{10.81 P}=\frac{1894}{P}
$$

Thread: Die cut. Table 8-17 gives 18.6 kpsi for rolled threads. Use Table 8-16 to find S_{e} for die cut threads

$$
S_{e}=18.6(3.0 / 3.8)=14.7 \mathrm{kpsi}
$$

Table 8-2:

$$
\begin{aligned}
A_{t} & =0.663 \mathrm{in}^{2} \\
\sigma & =P / A_{t}=P / 0.663=1.51 P \\
\sigma_{a} & =\sigma_{m}=\sigma / 2=1.51 P / 2=0.755 P
\end{aligned}
$$

From Table 7-10, Gerber

$$
\begin{aligned}
& S_{a}=\frac{120^{2}}{2(14.7)}\left[-1+\sqrt{1+\left(\frac{2(14.7)}{120}\right)^{2}}\right]=14.5 \mathrm{kpsi} \\
& n_{f}=\frac{S_{a}}{\sigma_{a}}=\frac{14500}{0.755 P}=\frac{19200}{P}
\end{aligned}
$$

Comparing 1894/P with $19200 / P$, we conclude that the eye is weaker in fatigue.
(b) Strengthening steps can include heat treatment, cold forming, cross section change (a round is a poor cross section for a curved bar in bending because the bulk of the material is located where the stress is small). Ans.
(c) For $n_{f}=2$

$$
P=\frac{1894}{2}=947 \mathrm{lbf}, \text { max. load Ans. }
$$

8-34 (a) $L \geq 1.5+2(0.134)+\frac{41}{64}=2.41$ in. Use $L=2 \frac{1}{2}$ in Ans.
(b) Four frusta: Two washers and two members

Washer: $E=30 \mathrm{Mpsi}, t=0.134 \mathrm{in}, D=1.125 \mathrm{in}, d=0.75$ in
Eq. (8-20): $\quad k_{1}=153.3 \mathrm{Mlbf} / \mathrm{in}$
Member: $E=16 \mathrm{Mpsi}, t=0.75 \mathrm{in}, D=1.280 \mathrm{in}, d=0.75$ in
Eq. (8-20):

$$
k_{2}=35.5 \mathrm{Mlbf} / \mathrm{in}
$$

$$
k_{m}=\frac{1}{(2 / 153.3)+(2 / 35.5)}=14.41 \mathrm{Mlbf} / \mathrm{in} \text { Ans. }
$$

Bolt:

$$
\begin{aligned}
& L_{T}=2(3 / 4)+1 / 4=1^{3} / 4 \mathrm{in} \\
& l=2(0.134)+2(0.75)=1.768 \mathrm{in} \\
& l_{d}=L-L_{T}=2.50-1.75=0.75 \mathrm{in} \\
& l_{t}=l-l_{d}=1.768-0.75=1.018 \mathrm{in} \\
& A_{t}=0.373 \mathrm{in}^{2} \quad(\text { Table } 8-2) \\
& A_{d}=\pi(0.75)^{2} / 4=0.442 \mathrm{in}^{2} \\
& k_{b}=\frac{A_{d} A_{t} E}{A_{d} l_{t}+A_{t} l_{d}}=\frac{0.442(0.373)(30)}{0.442(1.018)+0.373(0.75)}=6.78 \mathrm{Mlbf} / \mathrm{in} \quad \text { Ans. } \\
& C=\frac{6.78}{6.78+14.41}=0.320 \quad \text { Ans. }
\end{aligned}
$$

(c) From Eq. (8-40), Goodman with $S_{e}=18.6 \mathrm{kpsi}, S_{u t}=120 \mathrm{kpsi}$

$$
S_{a}=\frac{18.6[120-(25 / 0.373)]}{120+18.6}=7.11 \mathrm{kpsi}
$$

The stress components are

$$
\begin{aligned}
\sigma_{a}= & \frac{C P}{2 A_{t}}=\frac{0.320(6)}{2(0.373)}=2.574 \mathrm{kpsi} \\
\sigma_{m}= & \sigma_{a}+\frac{F_{i}}{A_{t}}=2.574+\frac{25}{0.373}=69.6 \mathrm{kpsi} \\
& n_{f}=\frac{S_{a}}{\sigma_{a}}=\frac{7.11}{2.574}=2.76 \quad \text { Ans. }
\end{aligned}
$$

(d) Eq. (8-42) for Gerber

$$
\begin{aligned}
& S_{a}=\frac{1}{2(18.6)}\left[120 \sqrt{120^{2}+4(18.6)\left(18.6+\frac{25}{0.373}\right)}-120^{2}-2\left(\frac{25}{0.373}\right) 18.6\right] \\
&=10.78 \mathrm{kpsi} \\
& n_{f}=\frac{10.78}{2.574}=4.19 \quad \text { Ans. }
\end{aligned}
$$

(e) $n_{\text {proof }}=\frac{85}{2.654+69.8}=1.17$ Ans.
(a) Table 8-2

$$
\begin{aligned}
A_{t} & =0.1419 \mathrm{in}^{2} \\
S_{p} & =85 \mathrm{kpsi}, S_{u t}=120 \mathrm{kpsi} \\
S_{e} & =18.6 \mathrm{kpsi} \\
F_{i} & =0.75 A_{t} S_{p}=0.75(0.1419)(85)=9.046 \mathrm{kip} \\
C & =\frac{4.94}{4.94+15.97}=0.236 \\
\sigma_{a} & =\frac{C P}{2 A_{t}}=\frac{0.236 P}{2(0.1419)}=0.832 P \mathrm{kpsi}
\end{aligned}
$$

Table 8-9:
Table 8-17:

Eq. (8-40) for Goodman criterion

$$
\begin{aligned}
& S_{a}=\frac{18.6(120-9.046 / 0.1419)}{120+18.6}=7.55 \mathrm{kpsi} \\
& n_{f}=\frac{S_{a}}{\sigma_{a}}=\frac{7.55}{0.832 P}=2 \quad \Rightarrow \quad P=4.54 \mathrm{kip} \quad \text { Ans. }
\end{aligned}
$$

(b) Eq. (8-42) for Gerber criterion

$$
\begin{aligned}
S_{a} & =\frac{1}{2(18.6)}\left[120 \sqrt{120^{2}+4(18.6)\left(18.6+\frac{9.046}{0.1419}\right)}-120^{2}-2\left(\frac{9.046}{0.1419}\right) 18.6\right] \\
& =11.32 \mathrm{kpsi} \\
n_{f} & =\frac{S_{a}}{\sigma_{a}}=\frac{11.32}{0.832 P}=2
\end{aligned}
$$

From which

$$
P=\frac{11.32}{2(0.832)}=6.80 \mathrm{kip} \quad \text { Ans }
$$

(c) $\sigma_{a}=0.832 P=0.832(6.80)=5.66 \mathrm{kpsi}$

$$
\sigma_{m}=S_{a}+\sigma_{a}=11.32+63.75=75.07 \mathrm{kpsi}
$$

Load factor, Eq. (8-28)

$$
n=\frac{S_{p} A_{t}-F_{i}}{C P}=\frac{85(0.1419)-9.046}{0.236(6.80)}=1.88 \quad \text { Ans } .
$$

Separation load factor, Eq. (8-29)

$$
n=\frac{F_{i}}{(1-C) P}=\frac{9.046}{6.80(1-0.236)}=1.74 \quad \text { Ans. }
$$

8-36 Table 8-2:

$$
\begin{aligned}
& A_{t}=0.969 \mathrm{in}^{2} \quad \text { (coarse) } \\
& A_{t}=1.073 \mathrm{in}^{2} \quad \text { (fine) } \\
& S_{p}=74 \mathrm{kpsi}, \quad S_{u t}=105 \mathrm{kpsi} \\
& S_{e}=16.3 \mathrm{kpsi}
\end{aligned}
$$

Table 8-9:
Table 8-17:

Coarse thread, UNC

$$
\begin{aligned}
F_{i} & =0.75(0.969)(74)=53.78 \mathrm{kip} \\
\sigma_{i} & =\frac{F_{i}}{A_{t}}=\frac{53.78}{0.969}=55.5 \mathrm{kpsi} \\
\sigma_{a} & =\frac{C P}{2 A_{t}}=\frac{0.30 P}{2(0.969)}=0.155 P \mathrm{kpsi}
\end{aligned}
$$

Eq. (8-42):

$$
\begin{aligned}
& S_{a}=\frac{1}{2(16.3)}\left[105 \sqrt{105^{2}+4(16.3)(16.3+55.5)}-105^{2}-2(55.5)(16.3)\right]=9.96 \mathrm{kpsi} \\
& n_{f}=\frac{S_{a}}{\sigma_{a}}=\frac{9.96}{0.155 P}=2
\end{aligned}
$$

From which

$$
P=\frac{9.96}{0.155(2)}=32.13 \mathrm{kip} \quad \text { Ans. }
$$

Fine thread, UNF

$$
\begin{aligned}
F_{i} & =0.75(1.073)(74)=59.55 \mathrm{kip} \\
\sigma_{i} & =\frac{59.55}{1.073}=55.5 \mathrm{kpsi} \\
\sigma_{a} & =\frac{0.32 P}{2(1.073)}=0.149 P \mathrm{kpsi} \\
S_{a} & =9.96 \quad(\text { as before }) \\
n_{f} & =\frac{S_{a}}{\sigma_{a}}=\frac{9.96}{0.149 P}=2
\end{aligned}
$$

From which

$$
P=\frac{9.96}{0.149(2)}=33.42 \mathrm{kip} \quad \text { Ans. }
$$

Percent improvement

$$
\frac{33.42-32.13}{32.13}(100) \doteq 4 \% \quad \text { Ans }
$$

8-37 For a M 30×3.5 ISO 8.8 bolt with $P=80 \mathrm{kN} /$ bolt and $C=0.33$
Table 8-1:

$$
A_{t}=561 \mathrm{~mm}^{2}
$$

Table 8-11:

$$
S_{p}=600 \mathrm{MPa}
$$

$$
S_{u t}=830 \mathrm{MPa}
$$

Table 8-17:

$$
S_{e}=129 \mathrm{MPa}
$$

$$
\begin{aligned}
F_{i} & =0.75(561)\left(10^{-3}\right)(600)=252.45 \mathrm{kN} \\
\sigma_{i} & =\frac{252.45\left(10^{-3}\right)}{561}=450 \mathrm{MPa} \\
\sigma_{a} & =\frac{C P}{2 A_{t}}=\frac{0.33(80)\left(10^{3}\right)}{2(561)}=23.53 \mathrm{MPa}
\end{aligned}
$$

Eq. (8-42):

$$
S_{a}=\frac{1}{2(129)}\left[830 \sqrt{830^{2}+4(129)(129+450)}-830^{2}-2(450)(129)\right]=77.0 \mathrm{MPa}
$$

Fatigue factor of safety

$$
n_{f}=\frac{S_{a}}{\sigma_{a}}=\frac{77.0}{23.53}=3.27 \quad \text { Ans } .
$$

Load factor from Eq. (8-28),

$$
n=\frac{S_{p} A_{t}-F_{i}}{C P}=\frac{600\left(10^{-3}\right)(561)-252.45}{0.33(80)}=3.19 \quad \text { Ans. }
$$

Separation load factor from Eq. (8-29),

$$
n=\frac{F_{i}}{(1-C) P}=\frac{252.45}{(1-0.33)(80)}=4.71 \quad \text { Ans. }
$$

8-38
(a) Table 8-2:

$$
A_{t}=0.0775 \mathrm{in}^{2}
$$

Table 8-9:

$$
S_{p}=85 \mathrm{kpsi}, \quad S_{u t}=120 \mathrm{kpsi}
$$

Table 8-17:

$$
S_{e}=18.6 \mathrm{kpsi}
$$

Unthreaded grip

$$
\begin{aligned}
k_{b} & =\frac{A_{d} E}{l}=\frac{\pi(0.375)^{2}(30)}{4(13.5)}=0.245 \mathrm{Mlbf} / \mathrm{in} \text { per bolt Ans. } \\
A_{m} & =\frac{\pi}{4}\left[(D+2 t)^{2}-D^{2}\right]=\frac{\pi}{4}\left(4.75^{2}-4^{2}\right)=5.154 \mathrm{in}^{2} \\
k_{m} & =\frac{A_{m} E}{l}=\frac{5.154(30)}{12}\left(\frac{1}{6}\right)=2.148 \text { Mlbf/in/bolt. Ans. }
\end{aligned}
$$

(b)

$$
\begin{aligned}
F_{i} & =0.75(0.0775)(85)=4.94 \mathrm{kip} \\
\sigma_{i} & =0.75(85)=63.75 \mathrm{kpsi} \\
P & =p A=\frac{2000}{6}\left[\frac{\pi}{4}(4)^{2}\right]=4189 \mathrm{lbf} / \mathrm{bolt} \\
C & =\frac{0.245}{0.245+2.148}=0.102 \\
\sigma_{a} & =\frac{C P}{2 A_{t}}=\frac{0.102(4.189)}{2(0.0775)}=2.77 \mathrm{kpsi}
\end{aligned}
$$

Eq. (8-40) for Goodman

$$
\begin{gathered}
S_{a}=\frac{18.6(120-63.75)}{120+18.6}=7.55 \mathrm{kpsi} \\
n_{f}=\frac{S_{a}}{\sigma_{a}}=\frac{7.55}{2.77}=2.73 \quad \mathrm{Ans} .
\end{gathered}
$$

(c) From Eq. (8-42) for Gerber fatigue criterion,

$$
\begin{aligned}
S_{a} & =\frac{1}{2(18.6)}\left[120 \sqrt{120^{2}+4(18.6)(18.6+63.75)}-120^{2}-2(63.75)(18.6)\right] \\
& =11.32 \mathrm{kpsi}
\end{aligned}
$$

$$
n_{f}=\frac{S_{a}}{\sigma_{a}}=\frac{11.32}{2.77}=4.09 \quad \text { Ans }
$$

(d) Pressure causing joint separation from Eq. (8-29)

$$
\begin{aligned}
n & =\frac{F_{i}}{(1-C) P}=1 \\
P & =\frac{F_{i}}{1-C}=\frac{4.94}{1-0.102}=5.50 \mathrm{kip} \\
p & =\frac{P}{A}=\frac{5500}{\pi\left(4^{2}\right) / 4} 6=2626 \mathrm{psi} \quad \text { Ans. }
\end{aligned}
$$

8-39 This analysis is important should the initial bolt tension fail. Members: $S_{y}=71 \mathrm{kpsi}$, $S_{s y}=0.577(71)=41.0 \mathrm{kpsi}$. Bolts: SAE grade $8, S_{y}=130 \mathrm{kpsi}, S_{s y}=0.577(130)=$ 75.01 kpsi

Shear in bolts

$$
\begin{aligned}
& A_{s}=2\left[\frac{\pi\left(0.375^{2}\right)}{4}\right]=0.221 \mathrm{in}^{2} \\
& F_{s}=\frac{A_{s} S_{s y}}{n}=\frac{0.221(75.01)}{3}=5.53 \mathrm{kip}
\end{aligned}
$$

Bearing on bolts

$$
\begin{aligned}
A_{b} & =2(0.375)(0.25)=0.188 \mathrm{in}^{2} \\
F_{b} & =\frac{A_{b} S_{y c}}{n}=\frac{0.188(130)}{2}=12.2 \mathrm{kip}
\end{aligned}
$$

Bearing on member

$$
F_{b}=\frac{0.188(71)}{2.5}=5.34 \mathrm{kip}
$$

Tension of members

$$
\begin{aligned}
A_{t} & =(1.25-0.375)(0.25)=0.219 \mathrm{in}^{2} \\
F_{t} & =\frac{0.219(71)}{3}=5.18 \mathrm{kip} \\
F & =\min (5.53,12.2,5.34,5.18)=5.18 \mathrm{kip} \quad \text { Ans. }
\end{aligned}
$$

The tension in the members controls the design.

8-40 Members: $S_{y}=32 \mathrm{kpsi}$
Bolts: $S_{y}=92 \mathrm{kpsi}, S_{s y}=(0.577) 92=53.08 \mathrm{kpsi}$

Shear of bolts

$$
\begin{aligned}
A_{s} & =2\left[\frac{\pi(0.375)^{2}}{4}\right]=0.221 \mathrm{in}^{2} \\
\tau & =\frac{F_{s}}{A_{s}}=\frac{4}{0.221}=18.1 \mathrm{kpsi} \\
n & =\frac{S_{s y}}{\tau}=\frac{53.08}{18.1}=2.93 \quad \text { Ans }
\end{aligned}
$$

Bearing on bolts

$$
\begin{aligned}
A_{b} & =2(0.25)(0.375)=0.188 \mathrm{in}^{2} \\
\sigma_{b} & =\frac{-4}{0.188}=-21.3 \mathrm{kpsi} \\
n & =\frac{S_{y}}{\left|\sigma_{b}\right|}=\frac{92}{|-21.3|}=4.32 \mathrm{Ans} .
\end{aligned}
$$

Bearing on members

$$
n=\frac{S_{y c}}{\left|\sigma_{b}\right|}=\frac{32}{|-21.3|}=1.50 \quad \text { Ans } .
$$

Tension of members

$$
\begin{aligned}
A_{t} & =(2.375-0.75)(1 / 4)=0.406 \mathrm{in}^{2} \\
\sigma_{t} & =\frac{4}{0.406}=9.85 \mathrm{kpsi} \\
n & =\frac{S_{y}}{A_{t}}=\frac{32}{9.85}=3.25 \quad \text { Ans. }
\end{aligned}
$$

8-41 Members: $S_{y}=71 \mathrm{kpsi}$
Bolts: $S_{y}=92 \mathrm{kpsi}, S_{s y}=0.577(92)=53.08 \mathrm{kpsi}$
Shear of bolts

$$
\begin{aligned}
F & =S_{s y} A / n \\
F_{s} & =\frac{53.08(2)(\pi / 4)(7 / 8)^{2}}{1.8}=35.46 \mathrm{kip}
\end{aligned}
$$

Bearing on bolts

$$
F_{b}=\frac{2(7 / 8)(3 / 4)(92)}{2.2}=54.89 \mathrm{kip}
$$

Bearing on members

$$
F_{b}=\frac{2(7 / 8)(3 / 4)(71)}{2.4}=38.83 \mathrm{kip}
$$

Tension in members

$$
\begin{aligned}
F_{t} & =\frac{(3-0.875)(3 / 4)(71)}{2.6}=43.52 \mathrm{kip} \\
F & =\min (35.46,54.89,38.83,43.52)=35.46 \mathrm{kip} \quad \text { Ans. }
\end{aligned}
$$

8-42 Members: $S_{y}=47 \mathrm{kpsi}$
Bolts: $S_{y}=92 \mathrm{kpsi}, S_{s y}=0.577(92)=53.08 \mathrm{kpsi}$

Shear of bolts

$$
\begin{aligned}
A_{d} & =\frac{\pi(0.75)^{2}}{4}=0.442 \mathrm{in}^{2} \\
\tau_{s} & =\frac{20}{3(0.442)}=15.08 \mathrm{kpsi} \\
n & =\frac{S_{s y}}{\tau_{s}}=\frac{53.08}{15.08}=3.52 \quad \text { Ans. }
\end{aligned}
$$

Bearing on bolt

$$
\begin{aligned}
\sigma_{b} & =-\frac{20}{3(3 / 4)(5 / 8)}=-14.22 \mathrm{kpsi} \\
n & =-\frac{S_{y}}{\sigma_{b}}=-\left(\frac{92}{-14.22}\right)=6.47 \quad \text { Ans. }
\end{aligned}
$$

Bearing on members

$$
\begin{aligned}
& \sigma_{b}=-\frac{F}{A_{b}}=-\frac{20}{3(3 / 4)(5 / 8)}=-14.22 \mathrm{kpsi} \\
& n=-\frac{S_{y}}{\sigma_{b}}=-\frac{47}{14.22}=3.31 \quad \text { Ans } .
\end{aligned}
$$

Tension on members

$$
\begin{aligned}
\sigma_{t} & =\frac{F}{A}=\frac{20}{(5 / 8)[7.5-3(3 / 4)]}=6.10 \mathrm{kpsi} \\
n & =\frac{S_{y}}{\sigma_{t}}=\frac{47}{6.10}=7.71 \quad \text { Ans }
\end{aligned}
$$

8-43 Members: $S_{y}=57 \mathrm{kpsi}$
Bolts: $S_{y}=92 \mathrm{kpsi}, S_{s y}=0.577(92)=53.08 \mathrm{kpsi}$
Shear of bolts

$$
\begin{aligned}
A_{s} & =3\left[\frac{\pi(3 / 8)^{2}}{4}\right]=0.3313 \mathrm{in}^{2} \\
\tau_{s} & =\frac{F}{A}=\frac{5.4}{0.3313}=16.3 \mathrm{kpsi} \\
n & =\frac{S_{s y}}{\tau_{s}}=\frac{53.08}{16.3}=3.26 \quad \text { Ans }
\end{aligned}
$$

Bearing on bolt

$$
\begin{aligned}
A_{b} & =3\left(\frac{3}{8}\right)\left(\frac{5}{16}\right)=0.3516 \mathrm{in}^{2} \\
\sigma_{b} & =-\frac{F}{A_{b}}=-\frac{5.4}{0.3516}=-15.36 \mathrm{kpsi} \\
n & =-\frac{S_{y}}{\sigma_{b}}=-\left(\frac{92}{-15.36}\right)=5.99 \quad \text { Ans. }
\end{aligned}
$$

Bearing on members

$$
\begin{aligned}
A_{b} & =0.3516 \mathrm{in}^{2} \text { (From bearing on bolt calculations) } \\
\sigma_{b} & =-15.36 \mathrm{kpsi} \text { (From bearing on bolt calculations) } \\
n & =-\frac{S_{y}}{\sigma_{b}}=-\left(\frac{57}{-15.36}\right)=3.71 \text { Ans. }
\end{aligned}
$$

Tension in members
Failure across two bolts

$$
\begin{aligned}
A & =\frac{5}{16}\left[2 \frac{3}{8}-2\left(\frac{3}{8}\right)\right]=0.5078 \mathrm{in}^{2} \\
\sigma & =\frac{F}{A}=\frac{5.4}{0.5078}=10.63 \mathrm{kpsi} \\
n & =\frac{S_{y}}{\sigma_{t}}=\frac{57}{10.63}=5.36 \quad \text { Ans }
\end{aligned}
$$

8-44

Members: $S_{y}=370 \mathrm{MPa}$
Bolts: $S_{y}=420 \mathrm{MPa}, S_{s y}=0.577(420)=242.3 \mathrm{MPa}$
Bolt shear:

$$
\begin{aligned}
A_{s} & =\frac{\pi}{4}\left(10^{2}\right)=78.54 \mathrm{~mm}^{2} \\
\tau & =\frac{7\left(10^{3}\right)}{78.54}=89.13 \mathrm{MPa} \\
n & =\frac{S_{s y}}{\tau}=\frac{242.3}{89.13}=2.72
\end{aligned}
$$

Bearing on member:

$$
\begin{aligned}
A_{b} & =t d=10(10)=100 \mathrm{~mm}^{2} \\
\sigma_{b} & =\frac{-7\left(10^{3}\right)}{100}=-70 \mathrm{MPa} \\
n & =-\frac{S_{y}}{\sigma}=\frac{-370}{-70}=5.29
\end{aligned}
$$

Strength of member
At A,

$$
\begin{aligned}
M & =1.4(200)=280 \mathrm{~N} \cdot \mathrm{~m} \\
I_{A} & =\frac{1}{12}\left[10\left(50^{3}\right)-10\left(10^{3}\right)\right]=103.3\left(10^{3}\right) \mathrm{mm}^{4} \\
\sigma_{A} & =\frac{M c}{I_{A}}=\frac{280(25)}{103.3\left(10^{3}\right)}\left(10^{3}\right)=67.76 \mathrm{MPa} \\
n & =\frac{S_{y}}{\sigma_{A}}=\frac{370}{67.76}=5.46
\end{aligned}
$$

At $C, M=1.4(350)=490 \mathrm{~N} \cdot \mathrm{~m}$

$$
\begin{aligned}
I_{C} & =\frac{1}{12}(10)\left(50^{3}\right)=104.2\left(10^{3}\right) \mathrm{mm}^{4} \\
\sigma_{C} & =\frac{490(25)}{104.2\left(10^{3}\right)}\left(10^{3}\right)=117.56 \mathrm{MPa} \\
n & =\frac{S_{y}}{\sigma_{C}}=\frac{370}{117.56}=3.15<5.46 \quad C \text { more critical } \\
n & =\min (2.72,5.29,3.15)=2.72 \quad \text { Ans. }
\end{aligned}
$$

8-45

$$
\begin{aligned}
F_{S} & =3000 \mathrm{lbf} \\
P & =\frac{3000(3)}{7}=1286 \mathrm{lbf}
\end{aligned}
$$

$$
\begin{aligned}
H & =\frac{7}{16} \text { in } \\
l & =\frac{1}{2}+\frac{1}{2}+0.095=1.095 \text { in } \\
L & \geq l+H=1.095+(7 / 16)=1.532 \mathrm{in}
\end{aligned}
$$

Use $1 \frac{3}{4}^{\prime \prime}$ bolts

$$
\begin{aligned}
L_{T} & =2 D+\frac{1}{4}=2(0.5)+0.25=1.25 \mathrm{in} \\
l_{d} & =1.75-1.25=0.5 \\
l_{t} & =1.095-0.5=0.595 \\
A_{d} & =\frac{\pi(0.5)^{2}}{4}=0.1963 \mathrm{in}^{2} \\
A_{t} & =0.1419 \mathrm{in} \\
k_{b} & =\frac{A_{d} A_{t} E}{A_{d} l_{t}+A_{t} l_{d}} \\
& =\frac{0.1963(0.1419)(30)}{0.1963(0.595)+0.1419(0.5)} \\
& =4.451 \mathrm{Mlbf} / \mathrm{in}
\end{aligned}
$$

Two identical frusta

$$
\begin{aligned}
A & =0.78715, B=0.62873 \\
k_{m} & =E d A \exp \left(0.62873 \frac{d}{L_{G}}\right) \\
& =30(0.5)(0.78715)\left[\exp \left(0.62873 \frac{0.5}{1.095}\right)\right] \\
k_{m} & =15.733 \mathrm{Mlbf} / \mathrm{in} \\
C & =\frac{4.451}{4.451+15.733}=0.2205 \\
S_{p} & =85 \mathrm{kpsi} \\
F_{i} & =0.75(0.1419)(85)=9.046 \mathrm{kip} \\
\sigma_{i} & =0.75(85)=63.75 \mathrm{kpsi} \\
\sigma_{b} & =\frac{C P+F_{i}}{A_{t}}=\frac{0.2205(1.286)+9.046}{0.1419}=65.75 \mathrm{kpsi} \\
\tau_{s} & =\frac{F_{s}}{A_{s}}=\frac{3}{0.1963}=15.28 \mathrm{kpsi}
\end{aligned}
$$

von Mises stress

$$
\sigma^{\prime}=\left(\sigma_{b}^{2}+3 \tau_{s}^{2}\right)^{1 / 2}=\left[65.74^{2}+3\left(15.28^{2}\right)\right]^{1 / 2}=70.87 \mathrm{kpsi}
$$

Stress margin

$$
m=S_{p}-\sigma^{\prime}=85-70.87=14.1 \mathrm{kpsi} \text { Ans. }
$$

$$
\begin{aligned}
8-46 & \begin{aligned}
2 P(200) & =12(50) \\
P & =\frac{12(50)}{2(200)}=1.5 \mathrm{kN} \text { per bolt } \\
F_{s} & =6 \mathrm{kN} / \mathrm{bolt} \\
S_{p} & =380 \mathrm{MPa} \\
A_{t} & =245 \mathrm{~mm}^{2}, A_{d}=\frac{\pi}{4}\left(20^{2}\right)=314.2 \mathrm{~mm}^{2} \\
F_{i} & =0.75(245)(380)\left(10^{-3}\right)=69.83 \mathrm{kN} \\
\sigma_{i} & =\frac{69.83\left(10^{3}\right)}{245}=285 \mathrm{MPa} \\
\sigma_{b} & =\frac{C P+F_{i}}{A_{t}}=\left(\frac{0.30(1.5)+69.83}{245}\right)\left(10^{3}\right)=287 \mathrm{MPa} \\
\tau & =\frac{F_{s}}{A_{d}}=\frac{6\left(10^{3}\right)}{314.2}=19.1 \mathrm{MPa} \\
\sigma^{\prime} & =\left[287^{2}+3\left(19.1^{2}\right)\right]^{1 / 2}=289 \mathrm{MPa} \\
m & =S_{p}-\sigma^{\prime}=380-289=91 \mathrm{MPa}
\end{aligned} \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Thus the bolt will not exceed the proof stress. Ans.
8-47 Using the result of Prob. 5-31 for lubricated assembly

$$
F_{x}=\frac{2 \pi f T}{0.18 d}
$$

With a design factor of n_{d} gives

$$
T=\frac{0.18 n_{d} F_{x} d}{2 \pi f}=\frac{0.18(3)(1000) d}{2 \pi(0.12)}=716 d
$$

or $T / d=716$. Also

$$
\begin{aligned}
\frac{T}{d} & =K\left(0.75 S_{p} A_{t}\right) \\
& =0.18(0.75)(85000) A_{t} \\
& =11475 A_{t}
\end{aligned}
$$

Form a table

Size	A_{t}	$T / d=11475 A_{t}$	n
$\frac{1}{4}-28$	0.0364	417.7	1.75
$\frac{5}{16}-24$	0.058	665.55	2.8
$\frac{3}{8}-24$	0.0878	1007.5	4.23

The factor of safety in the last column of the table comes from

$$
n=\frac{2 \pi f(T / d)}{0.18 F_{x}}=\frac{2 \pi(0.12)(T / d)}{0.18(1000)}=0.0042(T / d)
$$

Select a $\frac{3^{\prime \prime}}{8}-24$ UNF capscrew. The setting is given by

$$
T=\left(11475 A_{t}\right) d=1007.5(0.375)=378 \mathrm{lbf} \cdot \mathrm{in}
$$

Given the coarse scale on a torque wrench, specify a torque wrench setting of $400 \mathrm{lbf} \cdot \mathrm{in}$. Check the factor of safety

$$
n=\frac{2 \pi f T}{0.18 F_{x} d}=\frac{2 \pi(0.12)(400)}{0.18(1000)(0.375)}=4.47
$$

8-48

Bolts: $S_{p}=380 \mathrm{MPa}, S_{y}=420 \mathrm{MPa}$
Channel: $t=6.4 \mathrm{~mm}, S_{y}=170 \mathrm{MPa}$
Cantilever: $S_{y}=190 \mathrm{MPa}$
Nut: $H=10.8 \mathrm{~mm}$

$$
\begin{aligned}
F_{A}^{\prime}=F_{B}^{\prime}=F_{C}^{\prime} & =F / 3 \\
M & =(50+26+125) F=201 F \\
F_{A}^{\prime \prime} & =F_{C}^{\prime \prime}=\frac{201 F}{2(50)}=2.01 F \\
F_{C} & =F_{C}^{\prime}+F_{C}^{\prime \prime}=\left(\frac{1}{3}+2.01\right) F=2.343 F
\end{aligned}
$$

Bolts:
The shear bolt area is $A=\pi\left(12^{2}\right) / 4=113.1 \mathrm{~mm}^{2}$

$$
\begin{aligned}
S_{s y} & =0.577(420)=242.3 \mathrm{MPa} \\
F & =\frac{S_{s y}}{n}\left(\frac{A}{2.343}\right)=\frac{242.3(113.1)\left(10^{-3}\right)}{2.8(2.343)}=4.18 \mathrm{kN}
\end{aligned}
$$

Bearing on bolt: For a 12-mm bolt, at the channel,

$$
\begin{aligned}
A_{b} & =t d=(6.4)(12)=76.8 \mathrm{~mm}^{2} \\
F & =\frac{S_{y}}{n}\left(\frac{A_{b}}{2.343}\right)=\frac{420}{2.8}\left[\frac{76.8\left(10^{-3}\right)}{2.343}\right]=4.92 \mathrm{kN}
\end{aligned}
$$

Bearing on channel: $A_{b}=76.8 \mathrm{~mm}^{2}, S_{y}=170 \mathrm{MPa}$

$$
F=\frac{170}{2.8}\left[\frac{76.8\left(10^{-3}\right)}{2.343}\right]=1.99 \mathrm{kN}
$$

Bearing on cantilever:

$$
\begin{aligned}
A_{b} & =12(12)=144 \mathrm{~mm}^{2} \\
F & =\frac{190}{2.8}\left[\frac{(144)\left(10^{-3}\right)}{2.343}\right]=4.17 \mathrm{kN}
\end{aligned}
$$

Bending of cantilever:

$$
\begin{aligned}
I & =\frac{1}{12}(12)\left(50^{3}-12^{3}\right)=1.233\left(10^{5}\right) \mathrm{mm}^{4} \\
\frac{I}{c} & =\frac{1.233\left(10^{5}\right)}{25}=4932 \\
F=\frac{M}{151} & =\frac{4932(190)}{2.8(151)\left(10^{3}\right)}=2.22 \mathrm{kN}
\end{aligned}
$$

So $F=1.99 \mathrm{kN}$ based on bearing on channel Ans.

8-49
$F^{\prime}=4 \mathrm{kN} ; M=12(200)=2400 \mathrm{~N} \cdot \mathrm{~m}$
$F_{A}^{\prime \prime}=F_{B}^{\prime \prime}=\frac{2400}{64}=37.5 \mathrm{kN}$
$F_{A}=F_{B}=\sqrt{(4)^{2}+(37.5)^{2}}=37.7 \mathrm{kN}$ Ans.
$F_{O}=4 \mathrm{kN}$ Ans.
Bolt shear:

$$
\begin{aligned}
A_{s} & =\frac{\pi(12)^{2}}{4}=113 \mathrm{~mm}^{2} \\
\tau & =\frac{37.7(10)^{3}}{113}=334 \mathrm{MPa} \quad \text { Ans. }
\end{aligned}
$$

Bearing on member:

$$
\begin{aligned}
A_{b} & =12(8)=96 \mathrm{~mm}^{2} \\
\sigma & =-\frac{37.7(10)^{3}}{96}=-393 \mathrm{MPa} \quad \text { Ans. }
\end{aligned}
$$

Bending stress in plate:

$$
\begin{aligned}
I & =\frac{b h^{3}}{12}-\frac{b d^{3}}{12}-2\left(\frac{b d^{3}}{12}+a^{2} b d\right) \\
& =\frac{8(136)^{3}}{12}-\frac{8(12)^{3}}{12}-2\left[\frac{8(12)^{3}}{12}+(32)^{2}(8)(12)\right] \\
& =1.48(10)^{6} \mathrm{~mm}^{4} \quad \text { Ans. } \\
M & =12(200)=2400 \mathrm{~N} \cdot \mathrm{~m} \\
\sigma & =\frac{M c}{I}=\frac{2400(68)}{1.48(10)^{6}}(10)^{3}=110 \mathrm{MPa} \quad \text { Ans. }
\end{aligned}
$$

8-50

Shear of bolt:

$$
F_{A}^{\prime \prime}=F_{B}^{\prime \prime}=\frac{4950}{3}=1650 \mathrm{lbf}
$$

$$
\begin{aligned}
A_{s} & =\frac{\pi}{4}(0.5)^{2}=0.1963 \mathrm{in}^{2} \\
\tau & =\frac{F}{A}=\frac{1800}{0.1963}=9170 \mathrm{psi} \\
S_{s y} & =0.577(92)=53.08 \mathrm{kpsi} \\
n & =\frac{53.08}{9.17}=5.79 \quad \text { Ans }
\end{aligned}
$$

$$
F_{A}=1500 \mathrm{lbf}, \quad F_{B}=1800 \mathrm{lbf}
$$

Bearing on bolt:

$$
\begin{aligned}
A_{b} & =\frac{1}{2}\left(\frac{3}{8}\right)=0.1875 \mathrm{in}^{2} \\
\sigma & =-\frac{F}{A}=-\frac{1800}{0.1875}=-9600 \mathrm{psi} \\
n & =\frac{92}{9.6}=9.58 \quad \text { Ans. }
\end{aligned}
$$

Bearing on members: $S_{y}=54 \mathrm{kpsi}, n=\frac{54}{9.6}=5.63$ Ans.
Bending of members: Considering the right-hand bolt

$$
\begin{aligned}
M & =300(15)=4500 \mathrm{lbf} \cdot \mathrm{in} \\
I & =\frac{0.375(2)^{3}}{12}-\frac{0.375(0.5)^{3}}{12}=0.246 \mathrm{in}^{4} \\
\sigma & =\frac{M c}{I}=\frac{4500(1)}{0.246}=18300 \mathrm{psi} \\
n & =\frac{54(10)^{3}}{18300}=2.95 \text { Ans. }
\end{aligned}
$$

8-51 The direct shear load per bolt is $F^{\prime}=2500 / 6=417 \mathrm{lbf}$. The moment is taken only by the four outside bolts. This moment is $M=2500(5)=12500 \mathrm{lbf} \cdot \mathrm{in}$.
Thus $F^{\prime \prime}=\frac{12500}{2(5)}=1250 \mathrm{lbf}$ and the resultant bolt load is

$$
F=\sqrt{(417)^{2}+(1250)^{2}}=1318 \mathrm{lbf}
$$

Bolt strength, $S_{y}=57 \mathrm{kpsi}$; Channel strength, $S_{y}=46 \mathrm{kpsi}$; Plate strength, $S_{y}=45.5 \mathrm{kpsi}$
Shear of bolt: $\quad A_{s}=\pi(0.625)^{2} / 4=0.3068 \mathrm{in}^{2}$

$$
n=\frac{S_{s y}}{\tau}=\frac{(0.577)(57000)}{1318 / 0.3068}=7.66 \quad \text { Ans. }
$$

Bearing on bolt: Channel thickness is $t=3 / 16$ in;

$$
A_{b}=(0.625)(3 / 16)=0.117 \mathrm{in}^{2} ; n=\frac{57000}{1318 / 0.117}=5.07 \quad \text { Ans }
$$

Bearing on channel: $\quad n=\frac{46000}{1318 / 0.117}=4.08 \quad$ Ans.
Bearing on plate:

$$
\begin{aligned}
A_{b} & =0.625(1 / 4)=0.1563 \mathrm{in}^{2} \\
n & =\frac{45500}{1318 / 0.1563}=5.40 \quad \text { Ans }
\end{aligned}
$$

Bending of plate:

$$
\begin{aligned}
I= & \frac{0.25(7.5)^{3}}{12}-\frac{0.25(0.625)^{3}}{12} \\
& -2\left[\frac{0.25(0.625)^{3}}{12}+\left(\frac{1}{4}\right)\left(\frac{5}{8}\right)(2.5)^{2}\right]=6.821 \mathrm{in}^{4} \\
M= & 6250 \mathrm{lbf} \cdot \text { in per plate } \\
\sigma= & \frac{M c}{I}=\frac{6250(3.75)}{6.821}=3436 \mathrm{psi} \\
n= & \frac{45500}{3436}=13.2 \quad \text { Ans. }
\end{aligned}
$$

8-52 Specifying bolts, screws, dowels and rivets is the way a student learns about such components. However, choosing an array a priori is based on experience. Here is a chance for students to build some experience.

8-53 Now that the student can put an a priori decision of an array together with the specification of fasteners.

8-54 A computer program will vary with computer language or software application.

