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7-1 (a) DE-Gerber, Eq. (7-10):

A = {
4[2.2(600)]2 + 3[1.8(400)]2}1/2 = 2920 lbf · in

B = {
4[2.2(500)]2 + 3[1.8(300)]2}1/2 = 2391 lbf · in

d =

8(2)(2920)

π(30 000)


1 +

(
1 +

[
2(2391)(30 000)

2920(100 000)

]2
)1/2







1/3

= 1.016 in Ans.

(b) DE-elliptic, Eq. (7-12) can be shown to be

d =
(

16n

π

√
A2

S2
e

+ B2

S2
y

)1/3

=

16(2)

π

√(
2920

30 000

)2

+
(

2391

80 000

)2



1/3

= 1.012 in Ans.

(c) DE-Soderberg, Eq. (7-14) can be shown to be

d =
[

16n

π

(
A

Se
+ B

Sy

)]1/3

=
[

16(2)

π

(
2920

30 000
+ 2391

80 000

)]1/3

= 1.090 in Ans.

(d) DE-Goodman: Eq. (7-8) can be shown to be

d =
[

16n

π

(
A

Se
+ B

Sut

)]1/3

=
[

16(2)

π

(
2920

30 000
+ 2391

100 000

)]1/3

= 1.073 in Ans.

Criterion d (in) Compared to DE-Gerber

DE-Gerber 1.016
DE-elliptic 1.012 0.4% lower less conservative
DE-Soderberg 1.090 7.3% higher more conservative
DE-Goodman 1.073 5.6% higher more conservative
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7-2 This problem has to be done by successive trials, since Se is a function of shaft size. The
material is SAE 2340 for which Sut = 1226 MPa, Sy = 1130 MPa, and HB ≥ 368.

Eq. (6-19): ka = 4.51(1226)−0.265 = 0.685

Trial #1: Choose dr = 22 mm

Eq. (6-20): kb =
(

22

7.62

)−0.107

= 0.893

Eq. (6-18): Se = 0.685(0.893)(0.5)(1226) = 375 MPa

dr = d − 2r = 0.75D − 2D/20 = 0.65D

D = dr

0.65
= 22

0.65
= 33.8 mm

r = D

20
= 33.8

20
= 1.69 mm

Fig. A-15-14:

d = dr + 2r = 22 + 2(1.69) = 25.4 mm

d

dr
= 25.4

22
= 1.15

r

dr
= 1.69

22
= 0.077

Kt = 1.9

Fig. A-15-15: Kts = 1.5

Fig. 6-20: r = 1.69 mm, q = 0.90

Fig. 6-21: r = 1.69 mm, qs = 0.97

Eq. (6-32): K f = 1 + 0.90(1.9 − 1) = 1.81

K f s = 1 + 0.97(1.5 − 1) = 1.49

We select the DE-ASME Elliptic failure criteria.

Eq. (7-12) with d as dr , and Mm = Ta = 0,

dr =

16(2.5)

π

[
4

(
1.81(70)(103)

375

)2

+ 3

(
1.49(45)(103)

1130

)2
]1/2




1/3

= 20.6 mm
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Trial #2: Choose dr = 20.6 mm

kb =
(

20.6

7.62

)−0.107

= 0.899

Se = 0.685(0.899)(0.5)(1226) = 377.5 MPa

D = dr

0.65
= 20.6

0.65
= 31.7 mm

r = D

20
= 31.7

20
= 1.59 mm

Figs. A-15-14 and A-15-15:

d = dr + 2r = 20.6 + 2(1.59) = 23.8 mm

d

dr
= 23.8

20.6
= 1.16

r

dr
= 1.59

20.6
= 0.077

We are at the limit of readability of the figures so

Kt = 1.9, Kts = 1.5 q = 0.9, qs = 0.97

∴ K f = 1.81 K f s = 1.49

Using Eq. (7-12) produces dr = 20.5 mm. Further iteration produces no change.

Decisions:

dr = 20.5 mm

D = 20.5

0.65
= 31.5 mm, d = 0.75(31.5) = 23.6 mm

Use D = 32 mm, d = 24 mm, r = 1.6 mm Ans.

7-3 F cos 20°(d/2) = T , F = 2T/(d cos 20°) = 2(3000)/(6 cos 20°) = 1064 lbf

MC = 1064(4) = 4257 lbf · in

For sharp fillet radii at the shoulders, from Table 7-1, Kt = 2.7, and Kts = 2.2. Examining
Figs. 6-20 and 6-21, with Sut = 80 kpsi, conservatively estimate q = 0.8 and qs = 0.9. These
estimates can be checked once a specific fillet radius is determined.

Eq. (6-32): K f = 1 + (0.8)(2.7 − 1) = 2.4

K f s = 1 + (0.9)(2.2 − 1) = 2.1

(a) Static analysis using fatigue stress concentration factors:

From Eq. (7-15) with M = Mm , T = Tm , and Ma = Ta = 0,

σ ′
max =

[(
32K f M

πd3

)2

+ 3

(
16K f sT

πd3

)2
]1/2
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Eq. (7-16): n = Sy

σ ′
max

= Sy[(
32K f M

πd3

)2

+ 3

(
16K f sT

πd3

)2
]1/2

Solving for d,

d =
{

16n

π Sy

[
4(K f M)2 + 3(K f sT )2]1/2

}1/3

=
{

16(2.5)

π(60 000)

[
4(2.4)(4257)2 + 3(2.1)(3000)2]1/2

}1/3

= 1.700 in Ans.

(b) ka = 2.70(80)−0.265 = 0.845

Assume d = 2.00 in to estimate the size factor,

kb =
(

2

0.3

)−0.107

= 0.816

Se = 0.845(0.816)(0.5)(80) = 27.6 kpsi

Selecting the DE-ASME Elliptic criteria, use Eq. (7-12) with Mm = Ta = 0.

d =

16(2.5)

π

[
4

(
2.4(4257)

27 600

)2

+ 3

(
2.1(3000)

60 000

)2
]1/2




1/3

= 2.133 in

Revising kb results in d = 2.138 in Ans.

7-4 We have a design task of identifying bending moment and torsion diagrams which are pre-
liminary to an industrial roller shaft design.

F y
C = 30(8) = 240 lbf

Fz
C = 0.4(240) = 96 lbf

T = Fz
C (2) = 96(2) = 192 lbf · in

Fz
B = T

1.5
= 192

1.5
= 128 lbf

F y
B = Fz

B tan 20° = 128 tan 20° = 46.6 lbf

z

y

Fy
B

Fz
B

Fz
C

Fy
C
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(a) xy-plane

∑
MO = 240(5.75) − F y

A(11.5) − 46.6(14.25) = 0

F y
A = 240(5.75) − 46.6(14.25)

11.5
= 62.3 lbf

∑
MA = F y

O(11.5) − 46.6(2.75) − 240(5.75) = 0

F y
O = 240(5.75) + 46.6(2.75)

11.5
= 131.1 lbf

Bending moment diagram

xz-plane

∑
MO = 0

= 96(5.75) − Fz
A(11.5) + 128(14.25)

Fz
A = 96(5.75) + 128(14.25)

11.5
= 206.6 lbf∑

MA = 0

= Fz
O(11.5) + 128(2.75) − 96(5.75)

Fz
O = 96(5.75) − 128(2.75)

11.5
= 17.4 lbf

Bending moment diagram:

MC =
√

1002 + (−754)2 = 761 lbf · in

MA =
√

(−128)2 + (−352)2 = 375 lbf · in

This approach over-estimates the bending moment at C, but not at A.

C

100

�352

A B
O

Mxz

(lbf•in)

x

11.5"

5.75"
C A

Fz
AFz

O

B

z

2.75"

96 128

O x

C
O

�754

�128

A B

Mxy

(lbf•in)

x

11.5"

5.75" AC
O

FA
yFO

y

B
x

y

2.75"

240

46.6
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(b) xy-plane

Mxy = −131.1x + 15〈x − 1.75〉2 − 15〈x − 9.75〉2 − 62.3〈x − 11.5〉1

Mmax occurs at 6.12 in

Mmax = −516 lbf · in

MC = 131.1(5.75) − 15(5.75 − 1.75)2 = 514

Reduced from 754 lbf · in. The maximum occurs at x = 6.12 in rather than C, but it is
close enough.

xz-plane

Mxz = 17.4x − 6〈x − 1.75〉2 + 6〈x − 9.75〉2 + 206.6〈x − 11.5〉1

Let Mnet =
√

M2
xy + M2

xz

Plot Mnet(x)

1.75 ≤ x ≤ 11.5 in

Mmax = 516 lbf · in
at x = 6.25 in

Torque: In both cases the torque rises from 0 to 192 lbf · in linearly across the roller and is
steady until the coupling keyway is encountered; then it falls linearly to 0 across the key. Ans.

7-5 This is a design problem, which can have many acceptable designs. See the solution for
Problem 7-7 for an example of the design process.

C

 4.1

516

231

�352

374

O

O

A B

Mnet

(lbf •in)

x

1.75

30.5

Mxz

(lbf•in)

x

206.617.4

x

x

12812 lbf/in

C

�514

�128
�229

A B1.75
O

Mxy

(lbf•in)

x

x

62.3131.1

30 lbf/in

46.6

y
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7-6 If students have access to finite element or beam analysis software, have them model the shaft
to check deflections. If not, solve a simpler version of shaft. The 1" diameter sections will not
affect the results much, so model the 1" diameter as 1.25". Also, ignore the step in AB.

From Prob. 18-10, integrate Mxy and Mxz

xy plane, with dy/dx = y′

E I y′ = −131.1

2
(x2) + 5〈x − 1.75〉3 − 5〈x − 9.75〉3 − 62.3

2
〈x − 11.5〉2 + C1 (1)

E I y = −131.1

6
(x3) + 5

4
〈x − 1.75〉4 − 5

4
〈x − 9.75〉4 − 62.3

6
〈x − 11.5〉3 + C1x + C2

y = 0 at x = 0 ⇒ C2 = 0

y = 0 at x = 11.5 ⇒ C1 = 1908.4 lbf · in3

From (1) x = 0: E I y′ = 1908.4

x = 11.5: E I y′ = −2153.1
xz plane (treating z ↑+)

E I z′ = 17.4

2
(x2) − 2〈x − 1.75〉3 + 2〈x − 9.75〉3 + 206.6

2
〈x − 11.5〉2 + C3 (2)

E I z = 17.4

6
(x3) − 1

2
〈x − 1.75〉4 + 1

2
〈x − 9.75〉4 + 206.6

6
〈x − 11.5〉3 + C3x + C4

z = 0 at x = 0 ⇒ C4 = 0

z = 0 at x = 11.5 ⇒ C3 = 8.975 lbf · in3

From (2)
x = 0: E I z′ = 8.975

x = 11.5: E I z′ = −683.5

At O: E Iθ =
√

1908.42 + 8.9752 = 1908.4 lbf · in3

A: E Iθ =
√

(−2153.1)2 + (−683.5)2 = 2259 lbf · in3 (dictates size)

θ = 2259

30(106)(π/64)(1.254)
= 0.000 628 rad

n = 0.001

0.000 628
= 1.59

Az
x

y

O

C

B
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At gear mesh, B

xy plane

With I = I1 in section OCA, 

y′
A = −2153.1/E I1

Since y′
B/A is a cantilever, from Table A-9-1, with I = I2 in section AB

y′
B/A = Fx(x − 2l)

2E I2
= 46.6

2E I2
(2.75)[2.75 − 2(2.75)] = −176.2/E I2

∴ y′
B = y′

A + y′
B/A = − 2153.1

30(106)(π/64)(1.254)
− 176.2

30(106)(π/64)(0.8754)

= −0.000 803 rad (magnitude greater than 0.0005 rad)

xz plane

z′
A = −683.5

E I1
, z′

B/A = −128(2.752)

2E I2
= −484

E I2

z′
B = − 683.5

30(106)(π/64)(1.254)
− 484

30(106)(π/64)(0.8754)
= −0.000 751 rad

θB =
√

(−0.000 803)2 + (0.000 751)2 = 0.001 10 rad

Crowned teeth must be used.

Finite element results: Error in simplified model

θO = 5.47(10−4) rad 3.0%

θA = 7.09(10−4) rad 11.4%

θB = 1.10(10−3) rad 0.0%

The simplified model yielded reasonable results.

Strength Sut = 72 kpsi, Sy = 39.5 kpsi

At the shoulder at A, x = 10.75 in. From Prob. 7-4,

Mxy = −209.3 lbf · in, Mxz = −293.0 lbf · in, T = 192 lbf · in

M =
√

(−209.3)2 + (−293)2 = 360.0 lbf · in

S′
e = 0.5(72) = 36 kpsi

ka = 2.70(72)−0.265 = 0.869

z

A

B

x

128 lbf

C
O

x

y

A

B

C

O

46.6 lbf
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kb =
(

1

0.3

)−0.107

= 0.879

kc = kd = ke = k f = 1

Se = 0.869(0.879)(36) = 27.5 kpsi

From Fig. A-15-8 with D/d = 1.25 and r/d = 0.03, Kts = 1.8.

From Fig. A-15-9 with D/d = 1.25 and r/d = 0.03, Kt = 2.3

From Fig. 6-20 with r = 0.03 in, q = 0.65.

From Fig. 6-21 with r = 0.03 in, qs = 0.83

Eq. (6-31): K f = 1 + 0.65(2.3 − 1) = 1.85

K f s = 1 + 0.83(1.8 − 1) = 1.66

Using DE-elliptic, Eq. (7-11) with Mm = Ta = 0,

1

n
= 16

π(13)

{
4

[
1.85(360)

27 500

]2

+ 3

[
1.66(192)

39 500

]2
}1/2

n = 3.89

Perform a similar analysis at the profile keyway under the gear.

The main problem with the design is the undersized shaft overhang with excessive slope at
the gear. The use of crowned-teeth in the gears will eliminate this problem.

7-7 (a) One possible shaft layout is shown. Both bearings and the gear will be located against
shoulders. The gear and the motor will transmit the torque through keys. The bearings
can be lightly pressed onto the shaft. The left bearing will locate the shaft in the housing,
while the right bearing will float in the housing.

(b) From summing moments around the shaft axis, the tangential transmitted load through
the gear will be

Wt = T/(d/2) = 2500/(4/2) = 1250 lbf

The radial component of gear force is related by the pressure angle.

Wr = Wt tan φ = 1250 tan 20◦ = 455 lbf

W = [W 2
r + W 2

t ]1/2 = (4552 + 12502)1/2 = 1330 lbf

Reactions RA and RB , and the load W are all in the same plane. From force and moment
balance,

RA = 1330(2/11) = 242 lbf

RB = 1330(9/11) = 1088 lbf

Mmax = RA(9) = (242)(9) = 2178 lbf · in

budynas_SM_ch07.qxd  11/30/2006  17:09  Page 186



Chapter 7 187

Shear force, bending moment, and torque diagrams can now be obtained.

(c) Potential critical locations occur at each stress concentration (shoulders and keyways). To
be thorough, the stress at each potentially critical location should be evaluated. For now,
we will choose the most likely critical location, by observation of the loading situation,
to be in the keyway for the gear. At this point there is a large stress concentration, a large
bending moment, and the torque is present. The other locations either have small bend-
ing moments, or no torque. The stress concentration for the keyway is highest at the ends.
For simplicity, and to be conservative, we will use the maximum bending moment, even
though it will have dropped off a little at the end of the keyway.

(d) At the gear keyway, approximately 9 in from the left end of the shaft, the bending is com-
pletely reversed and the torque is steady.

Ma = 2178 lbf · in Tm = 2500 lbf · in Mm = Ta = 0

From Table 7-1, estimate stress concentrations for the end-milled keyseat to be
Kt = 2.2 and Kts = 3.0. For the relatively low strength steel specified (AISI 1020
CD), estimate notch sensitivities of q = 0.75 and qs = 0.9, obtained by observation of
Figs. 6-20 and 6-21. Assuming a typical radius at the bottom of the keyseat of
r/d = 0.02 (p. 361), these estimates for notch sensitivity are good for up to about 3 in
shaft diameter.

Eq. (6-32): K f = 1 + 0.75(2.2 − 1) = 1.9

K f s = 1 + 0.9(3.0 − 1) = 2.8

Eq. (6-19): ka = 2.70(68)−0.265 = 0.883

For estimating kb , guess d = 2 in.

kb = (2/0.3)−0.107 = 0.816

Se = (0.883)(0.816)(0.5)(68) = 24.5 kpsi

M

T

RBRA

2500 lbf • in

2178 lbf •in

242 lbf

�1088 lbf

9 in 2 in 6 in

V

W

Ans.
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Selecting the DE-Goodman criteria for a conservative first design, 

Eq. (7-8): d =
[

16n

π

{[
4(K f Ma)2

]1/2

Se
+

[
3(K f sTm)2

]1/2

Sut

}]1/3

d =
[

16n

π

{[
4(1.9 · 2178)2

]1/2

24 500
+

[
3(2.8 · 2500)2

]1/2

68 000

}]1/3

d = 1.58 in Ans.

With this diameter, the estimates for notch sensitivity and size factor were conservative,
but close enough for a first iteration until deflections are checked.

Check for static failure.

Eq. (7-15): σ ′
max =

[(
32K f Ma

πd3

)2

+ 3

(
16K f sTm

πd3

)2
]1/2

σ ′
max =

[(
32(1.9)(2178)

π(1.58)3

)2

+ 3

(
16(2.8)(2500)

π(1.58)3

)2
]1/2

= 19.0 kpsi

ny = Sy/σ
′
max = 57/19.0 = 3.0 Ans.

(e) Now estimate other diameters to provide typical shoulder supports for the gear and
bearings (p. 360). Also, estimate the gear and bearing widths.

(f) Entering this shaft geometry into beam analysis software (or Finite Element software),
the following deflections are determined:

Left bearing slope: 0.000532 rad

Right bearing slope: −0.000850 rad

Gear slope: −0.000545 rad

Right end of shaft slope: −0.000850 rad

Gear deflection: −0.00145 in

Right end of shaft deflection: 0.00510 in

Comparing these deflections to the recommendations in Table 7-2, everything is within
typical range except the gear slope is a little high for an uncrowned gear.

8

1.56

9

11 6

1.58 0.45

1.311.250 2.00
1.25

0.35

7 3
4
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(g) To use a non-crowned gear, the gear slope is recommended to be less than 0.0005 rad.
Since all other deflections are acceptable, we will target an increase in diameter only for
the long section between the left bearing and the gear. Increasing this diameter from the
proposed 1.56 in to 1.75 in, produces a gear slope of –0.000401 rad. All other deflections
are improved as well.

7-8 (a) Use the distortion-energy elliptic failure locus. The torque and moment loadings on the
shaft are shown in the solution to Prob. 7-7.

Candidate critical locations for strength:

• Pinion seat keyway
• Right bearing shoulder
• Coupling keyway

Table A-20 for 1030 HR: Sut = 68 kpsi, Sy = 37.5 kpsi, HB = 137

Eq. (6-8): S′
e = 0.5(68) = 34.0 kpsi

Eq. (6-19): ka = 2.70(68)−0.265 = 0.883

kc = kd = ke = 1

Pinion seat keyway

See Table 7-1 for keyway stress concentration factors

Kt = 2.2
Kts = 3.0

}
Profile keyway

For an end-mill profile keyway cutter of 0.010 in radius,

From Fig. 6-20: q = 0.50

From Fig. 6-21: qs = 0.65

Eq. (6-32):
K f s = 1 + qs(Kts − 1)

= 1 + 0.65(3.0 − 1) = 2.3

K f = 1 + 0.50(2.2 − 1) = 1.6

Eq. (6-20): kb =
(

1.875

0.30

)−0.107

= 0.822

Eq. (6-18): Se = 0.883(0.822)(34.0) = 24.7 kpsi

Eq. (7-11):

1

n
= 16

π(1.8753)

{
4

[
1.6(2178)

24 700

]2

+ 3

[
2.3(2500)

37 500

]2
}1/2

= 0.353, from which n = 2.83
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Right-hand bearing shoulder

The text does not give minimum and maximum shoulder diameters for 03-series bearings
(roller). Use D = 1.75 in.

r

d
= 0.030

1.574
= 0.019,

D

d
= 1.75

1.574
= 1.11

From Fig. A-15-9,

Kt = 2.4

From Fig. A-15-8,

Kts = 1.6

From Fig. 6-20, q = 0.65

From Fig. 6-21, qs = 0.83

K f = 1 + 0.65(2.4 − 1) = 1.91

K f s = 1 + 0.83(1.6 − 1) = 1.50

M = 2178

(
0.453

2

)
= 493 lbf · in

Eq. (7-11):

1

n
= 16

π(1.5743)

[
4

(
1.91(493)

24 700

)2

+ 3

(
1.50(2500)

37 500

)2
]1/2

= 0.247, from which n = 4.05

Overhanging coupling keyway

There is no bending moment, thus Eq. (7-11) reduces to:

1

n
= 16

√
3K f sTm

πd3Sy
= 16

√
3(1.50)(2500)

π(1.53)(37 500)

= 0.261 from which n = 3.83

(b) One could take pains to model this shaft exactly, using say finite element software.
However, for the bearings and the gear, the shaft is basically of uniform diameter, 1.875 in.
The reductions in diameter at the bearings will change the results insignificantly. Use
E = 30(106) psi.

To the left of the load:

θAB = Fb

6E Il
(3x2 + b2 − l2)

= 1449(2)(3x2 + 22 − 112)

6(30)(106)(π/64)(1.8254)(11)

= 2.4124(10−6)(3x2 − 117)

At x = 0: θ = −2.823(10−4) rad

At x = 9 in: θ = 3.040(10−4) rad
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At x = 11 in: θ = 1449(9)(112 − 92)

6(30)(106)(π/64)(1.8754)(11)

= 4.342(10−4) rad

Obtain allowable slopes from Table 7-2.

Left bearing: 

n f s = Allowable slope

Actual slope

= 0.001

0.000 282 3
= 3.54

Right bearing: 

n f s = 0.0008

0.000 434 2
= 1.84

Gear mesh slope:

Table 7-2 recommends a minimum relative slope of 0.0005 rad. While we don’t know the
slope on the next shaft, we know that it will need to have a larger diameter and be stiffer.
At the moment we can say

n f s <
0.0005

0.000 304
= 1.64

7-9 The solution to Problem 7-8 may be used as an example of the analysis process for a similar
situation.

7-10 If you have a finite element program available, it is highly recommended. Beam deflection
programs can be implemented but this is time consuming and the programs have narrow ap-
plications. Here we will demonstrate how the problem can be simplified and solved using
singularity functions.

Deflection: First we will ignore the steps near the bearings where the bending moments are
low. Thus let the 30 mm dia. be 35 mm. Secondly, the 55 mm dia. is very thin, 10 mm. The
full bending stresses will not develop at the outer fibers so full stiffness will not develop ei-
ther. Thus, ignore this step and let the diameter be 45 mm.

Statics: Left support: R1 = 7(315 − 140)/315 = 3.889 kN

Right support: R2 = 7(140)/315 = 3.111 kN

Determine the bending moment at each step.

x(mm) 0 40 100 140 210 275 315
M(N · m) 0 155.56 388.89 544.44 326.67 124.44 0

I35 = (π/64)(0.0354) = 7.366(10−8) m4, I40 = 1.257(10−7) m4, I45 = 2.013(10−7) m4
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Plot M/I as a function of x.

x(m) M/I (109 N/m3) Step Slope �Slope

0 0 52.8
0.04 2.112
0.04 1.2375 −0.8745 30.942 −21.86
0.1 3.094
0.1 1.932 −1.162 19.325 −11.617
0.14 2.705
0.14 2.705 0 −15.457 −34.78
0.21 1.623
0.21 2.6 0.977 −24.769 −9.312
0.275 0.99
0.275 1.6894 0.6994 −42.235 −17.47
0.315 0

The steps and the change of slopes are evaluated in the table. From these, the function M/I
can be generated:

M/I = [
52.8x − 0.8745〈x − 0.04〉0 − 21.86〈x − 0.04〉1 − 1.162〈x − 0.1〉0

− 11.617〈x − 0.1〉1 − 34.78〈x − 0.14〉1 + 0.977〈x − 0.21〉0

− 9.312〈x − 0.21〉1 + 0.6994〈x − 0.275〉0 − 17.47〈x − 0.275〉1] 109

Integrate twice:

E
dy

dx
= [

26.4x2 − 0.8745〈x − 0.04〉1 − 10.93〈x − 0.04〉2 − 1.162〈x − 0.1〉1

− 5.81〈x − 0.1〉2 − 17.39〈x − 0.14〉2 + 0.977〈x − 0.21〉1

− 4.655〈x − 0.21〉2 + 0.6994〈x − 0.275〉1 − 8.735〈x − 0.275〉2 + C1
]

109 (1)

Ey = [
8.8x3 − 0.4373〈x − 0.04〉2 − 3.643〈x − 0.04〉3 − 0.581〈x − 0.1〉2

− 1.937〈x − 0.1〉3 − 5.797〈x − 0.14〉3 + 0.4885〈x − 0.21〉2

− 1.552〈x − 0.21〉3 + 0.3497〈x − 0.275〉2 − 2.912〈x − 0.275〉3 + C1x + C2
]

109

Boundary conditions: y = 0 at x = 0 yields C2 = 0;
y = 0 at x = 0.315 m yields C1 = −0.295 25 N/m2.

Equation (1) with C1 = −0.295 25 provides the slopes at the bearings and gear. The fol-
lowing table gives the results in the second column. The third column gives the results from
a similar finite element model. The fourth column gives the result of a full model which
models the 35 and 55 mm diameter steps.

4

0

1

2

3

0 0.350.30.250.20.15

x (mm)

M
�I

 (
10

9  N
�m

3 )

0.10.05
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x (mm) θ (rad) F.E. Model Full F.E. Model

0 −0.001 4260 −0.001 4270 −0.001 4160
140 −0.000 1466 −0.000 1467 −0.000 1646
315 0.001 3120 0.001 3280 0.001 3150

The main discrepancy between the results is at the gear location (x = 140 mm) . The larger
value in the full model is caused by the stiffer 55 mm diameter step. As was stated earlier,
this step is not as stiff as modeling implicates, so the exact answer is somewhere between the
full model and the simplified model which in any event is a small value. As expected, mod-
eling the 30 mm dia. as 35 mm does not affect the results much.

It can be seen that the allowable slopes at the bearings are exceeded. Thus, either the load
has to be reduced or the shaft “beefed” up. If the allowable slope is 0.001 rad, then the max-
imum load should be Fmax = (0.001/0.001 46)7 = 4.79 kN. With a design factor this would
be reduced further.

To increase the stiffness of the shaft, increase the diameters by (0.001 46/0.001)1/4 =
1.097, from Eq. (7-18). Form a table:

Old d, mm 20.00 30.00 35.00 40.00 45.00 55.00
New ideal d, mm 21.95 32.92 38.41 43.89 49.38 60.35
Rounded up d, mm 22.00 34.00 40.00 44.00 50.00 62.00

Repeating the full finite element model results in

x = 0: θ = −9.30 × 10−4 rad

x = 140 mm: θ = −1.09 × 10−4 rad

x = 315 mm: θ = 8.65 × 10−4 rad

Well within our goal. Have the students try a goal of 0.0005 rad at the bearings.

Strength: Due to stress concentrations and reduced shaft diameters, there are a number of
locations to look at. A table of nominal stresses is given below. Note that torsion is only to
the right of the 7 kN load. Using σ = 32M/(πd3) and τ = 16T/(πd3) ,

x (mm) 0 15 40 100 110 140 210 275 300 330
σ (MPa) 0 22.0 37.0 61.9 47.8 60.9 52.0 39.6 17.6 0
τ (MPa) 0 0 0 0 0 6 8.5 12.7 20.2 68.1
σ ′ (MPa) 0 22.0 37.0 61.9 47.8 61.8 53.1 45.3 39.2 118.0

Table A-20 for AISI 1020 CD steel: Sut = 470 MPa, Sy = 390 MPa

At x = 210 mm:

ka = 4.51(470)−0.265 = 0.883, kb = (40/7.62)−0.107 = 0.837

Se = 0.883(0.837)(0.5)(470) = 174 MPa

D/d = 45/40 = 1.125, r/d = 2/40 = 0.05.

From Figs. A-15-8 and A-15-9, Kt = 1.9 and Kts = 1.32.
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From Figs. 6-20 and 6-21, q = 0.75 and qs = 0.92,

K f = 1 + 0.75(1.9 − 1) = 1.68, and K f s = 1 + 0.92(1.32 − 1) = 1.29.

From Eq. (7-11), with Mm = Ta = 0,

1

n
= 16

π(0.04)3

{
4

[
1.68(326.67)

174(106)

]2

+ 3

[
1.29(107)

390(106)

]2
}1/2

n = 1.98

At x = 330 mm: The von Mises stress is the highest but it comes from the steady torque
only.

D/d = 30/20 = 1.5, r/d = 2/20 = 0.1 ⇒ Kts = 1.42,

qs = 0.92 ⇒ K f s = 1.39

1

n
= 16

π(0.02)3

(√
3
) [

1.39(107)

390(106)

]

n = 2.38

Check the other locations.
If worse-case is at x = 210 mm, the changes discussed for the slope criterion will im-

prove the strength issue.

7-11 and 7-12 With these design tasks each student will travel different paths and almost all
details will differ. The important points are

• The student gets a blank piece of paper, a statement of function, and some
constraints–explicit and implied. At this point in the course, this is a good experience.

• It is a good preparation for the capstone design course.
• The adequacy of their design must be demonstrated and possibly include a designer’s

notebook.
• Many of the fundaments of the course, based on this text and this course, are useful. The

student will find them useful and notice that he/she is doing it.

• Don’t let the students create a time sink for themselves. Tell them how far you want them
to go.

7-13 I used this task as a final exam when all of the students in the course had consistent test
scores going into the final examination; it was my expectation that they would not change
things much by taking the examination.

This problem is a learning experience. Following the task statement, the following guid-
ance was added.

• Take the first half hour, resisting the temptation of putting pencil to paper, and decide what
the problem really is.

• Take another twenty minutes to list several possible remedies.

• Pick one, and show your instructor how you would implement it.
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The students’ initial reaction is that he/she does not know much from the problem state-
ment. Then, slowly the realization sets in that they do know some important things that the
designer did not. They knew how it failed, where it failed, and that the design wasn’t good
enough; it was close, though.

Also, a fix at the bearing seat lead-in could transfer the problem to the shoulder fillet, and
the problem may not be solved.

To many students’ credit, they chose to keep the shaft geometry, and selected a new
material to realize about twice the Brinell hardness.

7-14 In Eq. (7-24) set

I = πd4

64
, A = πd2

4
to obtain

ω =
(

π

l

)2 (
d

4

)√
gE

γ
(1)

or

d = 4l2ω

π2

√
γ

gE
(2)

(a) From Eq. (1) and Table A-5,

ω =
(

π

24

)2 (
1

4

)√
386(30)(106)

0.282
= 868 rad/s Ans.

(b) From Eq. (2),

d = 4(24)2(2)(868)

π2

√
0.282

386(30)(106)
= 2 in Ans.

(c) From Eq. (2),

lω = π2

4

d

l

√
gE

γ

Since d/ l is the same regardless of the scale.

lω = constant = 24(868) = 20 832

ω = 20 832

12
= 1736 rad/s Ans.

Thus the first critical speed doubles.

7-15 From Prob. 7-14, ω = 868 rad/s

A = 0.7854 in2, I = 0.04909 in4, γ = 0.282 lbf/in3 ,

E = 30(106) psi, w = Aγ l = 0.7854(0.282)(24) = 5.316 lbf
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One element:

Eq. (7-24) δ11 = 12(12)(242 − 122 − 122)

6(30)(106)(0.049 09)(24)
= 1.956(10−4) in/lbf

y1 = w1δ11 = 5.316(1.956)(10−4) = 1.0398(10−3) in

y2
1 = 1.0812(10−6)∑

wy = 5.316(1.0398)(10−3) = 5.528(10−3)∑
wy2 = 5.316(1.0812)(10−6) = 5.748(10−6)

ω1 =
√

g

∑
wy∑
wy2

=
√

386

[
5.528(10−3)

5.748(10−6)

]
= 609 rad/s (30% low)

Two elements:

δ11 = δ22 = 18(6)(242 − 182 − 62)

6(30)(106)(0.049 09)(24)
= 1.100(10−4) in/lbf

δ12 = δ21 = 6(6)(242 − 62 − 62)

6(30)(106)(0.049 09)(24)
= 8.556(10−5) in/lbf

y1 = w1δ11 + w2δ12 = 2.658(1.100)(10−4) + 2.658(8.556)(10−5)

= 5.198(10−4) in = y2,

y2
1 = y2

2 = 2.702(10−7) in2∑
wy = 2(2.658)(5.198)(10−4) = 2.763(10−3)∑

wy2 = 2(2.658)(2.702)(10−7) = 1.436(10−6)

ω1 =
√

386

[
2.763(10−3)

1.436(10−6)

]
= 862 rad/s (0.7% low)

Three elements:

δ11 = δ33 = 20(4)(242 − 202 − 42)

6(30)(106)(0.049 09)(24)
= 6.036(10−5) in/lbf

δ22 = 12(12)(242 − 122 − 122)

6(30)(106)(0.049 09)(24)
= 1.956(10−4) in/lbf

δ12 = δ32 = 12(4)(242 − 122 − 42)

6(30)(106)(0.049 09)(24)
= 9.416(10−5) in/lbf

δ13 = 4(4)(242 − 42 − 42)

6(30)(106)(0.049 09)(24)
= 4.104(10−5) in/lbf

1.772 lbf1.772 lbf1.772 lbf

4"4" 8" 8"

2.658 lbf2.658 lbf

6" 6" 6" 6"
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y1 = 1.772[6.036(10−5) + 9.416(10−5) + 4.104(10−5)] = 3.465(10−4) in

y2 = 1.772[9.416(10−5) + 1.956(10−4) + 9.416(10−5)] = 6.803(10−4) in

y3 = 1.772[4.104(10−5) + 9.416(10−5) + 6.036(10−5)] = 3.465(10−4) in∑
wy = 2.433(10−3),

∑
wy2 = 1.246(10−6)

ω1 =
√

386

[
2.433(10−3)

1.246(10−6)

]
= 868 rad/s (same as in Prob. 7-14)

The point was to show that convergence is rapid using a static deflection beam equation.
The method works because:

• If a deflection curve is chosen which meets the boundary conditions of moment-free and
deflection-free ends, and in this problem, of symmetry, the strain energy is not very sensi-
tive to the equation used.

• Since the static bending equation is available, and meets the moment-free and deflection-
free ends, it works.

7-16 (a) For two bodies, Eq. (7-26) is∣∣∣∣ (m1δ11 − 1/ω2) m2δ12
m1δ21 (m2δ22 − 1/ω2)

∣∣∣∣ = 0

Expanding the determinant yields,(
1

ω2

)2

− (m1δ11 + m2δ22)

(
1

ω2
1

)
+ m1m2(δ11δ22 − δ12δ21) = 0 (1)

Eq. (1) has two roots 1/ω2
1 and 1/ω2

2 . Thus(
1

ω2
− 1

ω2
1

)(
1

ω2
− 1

ω2
2

)
= 0

or, (
1

ω2

)2

+
(

1

ω2
1

+ 1

ω2
2

)(
1

ω

)2

+
(

1

ω2
1

)(
1

ω2
2

)
= 0 (2)

Equate the third terms of Eqs. (1) and (2), which must be identical.

1

ω2
1

1

ω2
2

= m1m2(δ11δ22 − δ12δ21) ⇒ 1

ω2
2

= ω2
1m1m2(δ11δ22 − δ12δ21)

and it follows that

ω2 = 1

ω1

√
g2

w1w2(δ11δ22 − δ12δ21)
Ans.

(b) In Ex. 7-5, Part (b) the first critical speed of the two-disk shaft (w1 = 35 lbf,
w2 = 55 lbf) is ω1 = 124.7 rad/s. From part (a), using influence coefficients

ω2 = 1

124.7

√
3862

35(55)[2.061(3.534) − 2.2342](10−8)
= 466 rad/s Ans.
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7-17 In Eq. (7-22) the term 
√

I/A appears. For a hollow unform diameter shaft,

√
I

A
=

√
π

(
d4

o − d4
i

)
/64

π
(

d2
o − d2

i

)
/4

=
√

1

16

(
d2

o + d2
i

)(
d2

o − d2
i

)
d2

o − d2
i

= 1

4

√
d2

o + d2
i

This means that when a solid shaft is hollowed out, the critical speed increases beyond that
of the solid shaft. By how much?

1
4

√
d2

o + d2
i

1
4

√
d2

o

=
√

1 +
(

di

do

)2

The possible values of di are 0 ≤ di ≤ do , so the range of critical speeds is 

ωs
√

1 + 0 to about ωs
√

1 + 1

or from ωs to 
√

2ωs . Ans.

7-18 All steps will be modeled using singularity functions with a spreadsheet. Programming both
loads will enable the user to first set the left load to 1, the right load to 0 and calculate δ11 and
δ21. Then setting left load to 0 and the right to 1 to get δ12 and δ22. The spreadsheet shown
on the next page shows the δ11 and δ21 calculation. Table for M/I vs x is easy to make. The
equation for M/I is:

M/I = D13x + C15〈x − 1〉0 + E15〈x − 1〉1 + E17〈x − 2〉1

+ C19〈x − 9〉0 + E19〈x − 9〉1 + E21〈x − 14〉1

+ C23〈x − 15〉0 + E23〈x − 15〉1

Integrating twice gives the equation for Ey. Boundary conditions y = 0 at x = 0 and at
x = 16 inches provide integration constants (C2 = 0). Substitution back into the deflection
equation at x = 2, 14 inches provides the δ ’s. The results are: δ11 − 2.917(10−7),
δ12 = δ21 = 1.627(10−7), δ22 = 2.231(10−7). This can be verified by finite element analysis.

y1 = 20(2.917)(10−7) + 35(1.627)(10−7) = 1.153(10−5)

y2 = 20(1.627)(10−7) + 35(2.231)(10−7) = 1.106(10−5)

y2
1 = 1.329(10−10), y2

2 = 1.224(10−10)∑
wy = 6.177(10−4),

∑
wy2 = 6.942(10−9)

Neglecting the shaft, Eq. (7-23) gives

ω1 =
√

386

[
6.177(10−4)

6.942(10−9)

]
= 5860 rad/s or 55 970 rev/min Ans.
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A B C D E F G H I

1 F1 = 1 F2 = 0 R1 = 0.875 (left reaction)
2
3 x M I1 = I4 = 0.7854
4 0 0 I2 = 1.833
5 1 0.875 I3 = 2.861
6 2 1.75
7 9 0.875
8 14 0.25
9 15 0.125

10 16 0
11
12 x M/I step slope � slope
13 0 0 1.114 082
14 1 1.114 082
15 1 0.477 36 −0.636 722 477 0.477 36 −0.636 72
16 2 0.954 719
17 2 0.954 719 0 −0.068 19 −0.545 55
18 9 0.477 36
19 9 0.305 837 −0.171 522 4 −0.043 69 0.024 503
20 14 0.087 382
21 14 0.087 382 0 −0.043 69 0
22 15 0.043 691
23 15 0.159 155 0.115 463 554 −0.159 15 −0.115 46
24 16 0
25
26 C1 = −4.906 001 093
27
28
29 δ11 = 2.91701E-07
30 δ21 = 1.6266E-07

Repeat for F1 = 0 and F2 = 1.

0.8

1

1.2

0

0.2

0.4

0.6

0 1614121086

x (in)

M
 (

lb
f•

in
)

42
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Modeling the shaft separately using 2 elements gives approximately

The spreadsheet can be easily modified to give

δ11 = 9.605(10−7), δ12 = δ21 = 5.718(10−7), δ22 = 5.472(10−7)

y1 = 1.716(10−5), y2 = 1.249(10−5), y2
1 = 2.946(10−10),

y2
2 = 1.561(10−10),

∑
wy = 3.316(10−4),

∑
wy2 = 5.052(10−9)

ω1 =
√

386

[
3.316(10−4)

5.052(10−9)

]
= 5034 rad/s Ans.

A finite element model of the exact shaft gives ω1 = 5340 rad/s. The simple model is
5.7% low.

Combination Using Dunkerley’s equation, Eq. (7-32):

1

ω2
1

= 1

58602
+ 1

50342
⇒ 3819 rad/s Ans.

7-19 We must not let the basis of the stress concentration factor, as presented, impose a view-
point on the designer. Table A-16 shows Kts as a decreasing monotonic as a function of
a/D. All is not what it seems.

Let us change the basis for data presentation to the full section rather than the net section.

τ = Ktsτ0 = K ′
tsτ

′
0

Kts = 32T

π AD3
= K ′

ts

(
32T

π D3

)

Therefore

K ′
ts = Kts

A

Form a table:

(a/D) A Kts K ′
ts

0.050 0.95 1.77 1.86
0.075 0.93 1.71 1.84
0.100 0.92 1.68 1.83 ← minimum
0.125 0.89 1.64 1.84
0.150 0.87 1.62 1.86
0.175 0.85 1.60 1.88
0.200 0.83 1.58 1.90

R1 R2

11 lbf11.32 lbf

4.5" 3.5"

9"

3.5"4.5"
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K ′
ts has the following attributes:

• It exhibits a minimum;

• It changes little over a wide range;

• Its minimum is a stationary point minimum at a/D
.= 0.100;

• Our knowledge of the minima location is

0.075 ≤ (a/D) ≤ 0.125

We can form a design rule: in torsion, the pin diameter should be about 1/10 of the shaft
diameter, for greatest shaft capacity. However, it is not catastrophic if one forgets the rule.

7-20 Choose 15 mm as basic size, D, d. Table 7-9: fit is designated as 15H7/h6. From 
Table A-11, the tolerance grades are �D = 0.018 mm and �d = 0.011 mm.

Hole: Eq. (7-36)

Dmax = D + �D = 15 + 0.018 = 15.018 mm Ans.

Dmin = D = 15.000 mm Ans.

Shaft: From Table A-12, fundamental deviation δF = 0. From Eq. (2-39)

dmax = d + δF = 15.000 + 0 = 15.000 mm Ans.

dmin = d + δR − �d = 15.000 + 0 − 0.011 = 14.989 mm Ans.

7-21 Choose 45 mm as basic size. Table 7-9 designates fit as 45H7/s6. From Table A-11, the
tolerance grades are �D = 0.025 mm and �d = 0.016 mm

Hole: Eq. (7-36)

Dmax = D + �D = 45.000 + 0.025 = 45.025 mm Ans.

Dmin = D = 45.000 mm Ans.

Shaft: From Table A-12, fundamental deviation δF = +0.043 mm. From Eq. (7-38)

dmin = d + δF = 45.000 + 0.043 = 45.043 mm Ans.

dmax = d + δF + �d = 45.000 + 0.043 + 0.016 = 45.059 mm Ans.

7-22 Choose 50 mm as basic size. From Table 7-9 fit is 50H7/g6. From Table A-11, the tolerance
grades are �D = 0.025 mm and �d = 0.016 mm.

Hole:

Dmax = D + �D = 50 + 0.025 = 50.025 mm Ans.

Dmin = D = 50.000 mm Ans.

Shaft: From Table A-12 fundamental deviation = −0.009 mm

dmax = d + δF = 50.000 + (−0.009) = 49.991 mm Ans.

dmin = d + δF − �d

= 50.000 + (−0.009) − 0.016

= 49.975 mm
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7-23 Choose the basic size as 1.000 in. From Table 7-9, for 1.0 in, the fit is H8/f7. From
Table A-13, the tolerance grades are �D = 0.0013 in and �d = 0.0008 in.

Hole: 
Dmax = D + (�D)hole = 1.000 + 0.0013 = 1.0013 in Ans.

Dmin = D = 1.0000 in Ans.

Shaft: From Table A-14: Fundamental deviation = −0.0008 in

dmax = d + δF = 1.0000 + (−0.0008) = 0.9992 in Ans.

dmin = d + δF − �d = 1.0000 + (−0.0008) − 0.0008 = 0.9984 in Ans.

Alternatively,

dmin = dmax − �d = 0.9992 − 0.0008 = 0.9984 in. Ans.

7-24 (a) Basic size is D = d = 1.5 in.

Table 7-9: H7/s6 is specified for medium drive fit.

Table A-13: Tolerance grades are �D = 0.001 in and �d = 0.0006 in.

Table A-14: Fundamental deviation is δF = 0.0017 in.

Eq. (7-36): Dmax = D + �D = 1.501 in Ans.

Dmin = D = 1.500 in Ans.

Eq. (7-37): dmax = d + δF + �d = 1.5 + 0.0017 + 0.0006 = 1.5023 in Ans.

Eq. (7-38): dmin = d + δF = 1.5 + 0.0017 + 1.5017 in Ans.

(b) Eq. (7-42): δmin = dmin − Dmax = 1.5017 − 1.501 = 0.0007 in

Eq. (7-43): δmax = dmax − Dmin = 1.5023 − 1.500 = 0.0023 in

Eq. (7-40): pmax = Eδmax

2d3

[
(d2

o − d2)(d2 − d2
i )

d2
o − d2

i

]

= (30)(106)(0.0023)

2(1.5)3

[
(2.52 − 1.52)(1.52 − 0)

2.52 − 0

]
= 14 720 psi Ans.

pmin = Eδmin

2d3

[(
d2

o − d2
) (

d2 − d2
i

)
d2

o − d2
i

]

= (30)(106)(0.0007)

2(1.5)3

[
(2.52 − 1.52)(1.52 − 0)

2.52 − 0

]
= 4480 psi Ans.

(c) For the shaft:

Eq. (7-44): σt ,shaft = −p = −14 720 psi

Eq. (7-46): σr,shaft = −p = −14 720 psi

Eq. (5-13): σ ′ = (σ 2
1 − σ1σ2 + σ 2

2 )1/2

= [(−14 720)2 − (−14 720)(−14 720) + (−14 720)2]1/2

= 14 720 psi

n = Sy/σ
′ = 57 000/14 720 = 3.9 Ans.
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For the hub:

Eq. (7-45): σt ,hub = p
d2

o + d2

d2
o − d2

= (14 720)

(
2.52 + 1.52

2.52 − 1.52

)
= 31 280 psi

Eq. (7-46): σr,hub = −p = −14 720 psi

Eq. (5-13): σ ′ = (σ 2
1 − σ1σ2 + σ 2

2 )1/2

= [(31 280)2 − (31 280)(−14 720) + (−14 720)2]1/2 = 40 689 psi

n = Sy/σ
′ = 85 000/40 689 = 2.1 Ans.

(d) Eq. (7-49) T = (π/2) f pminld2

= (π/2)(0.3)(4480)(2)(1.5)2 = 9500 lbf · in Ans.
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