AMERICAN UNIVERSITY OF BEIRUT
 Faculty of Arts and Sciences
 Computer Science Department
 CMPS 251
 MID TERM EXAMINATION
 SUMMER 2003-2004
 Closed Book, One hour 15 minutes

SUBMIT THE QUESTION SHEET WITH BOOKLET (ONLY NON-PROGRAMMABLE AND NON-GRAPHIC CALCULATORS ARE ALLOWED)

STUDENT NAME	
ID NUMBER	

1. Let $x \in \mathbb{F} \equiv \mathbb{F}\left(b, p, e_{\min }, e_{\max }\right)$, with $x= \pm m \times b^{e}$.
-(5 points) Fill in the bounds on m
\qquad
and if $m_{2}=\operatorname{succ}\left(m_{1}\right)$, both m_{1} and m_{2} mantissas in \mathbb{F}, find $m_{2}-m_{1}$.
-(10 points)Fill in the missing statements in the following MATLAB program that generates the positive elements of a floating-point system $\mathbb{F}\left(b, p, e_{\text {min }}, e_{\text {max }}\right)$.
function $x=f$ loat ($b, p, e m i n$, emax)
$\mathrm{x}=0$;
epsm=b^(-p+1);
\%M represents all possible values taken by the mantissa
M=. ;
$\mathrm{E}=\mathrm{b}^{\wedge} \mathrm{emin}$;
for
$\mathrm{x}=\left[\begin{array}{ll}\mathrm{x} & \mathrm{M} * \mathrm{E}\end{array}\right]$;
E=E*. ;
end
-(5 points) How many floating-point operations (additions and multiplications) would be required to execute the above program.
2. Consider the floating-point system $\mathbb{F}=\mathbb{F}(10,6,-4,5)$. This system uses rounding to the closest.
(a) Fill in the following table. (10 points)

Values of following parameters and elements in IEEE single precision system	
$x_{\min }$	
$x_{\max }$	
ϵ_{M} (epsilon machine)	
Representation of $\frac{1}{7}$	
$\operatorname{succ}\left(\frac{1}{7}\right)$	

(b) (10 points) Convert $x=(52.225)_{10}$ into octal form? Give then the hexadecimal form of the internal IEEE single precision floating point representation of x, using rounding to the closest.

Conversion of $x=(52.225)_{10}$	to octal and IEEE hexadecimal form
Corresponding octal form	
Corresponding IEEE hexadecimal form	

3. Consider the function $f(x)=e^{-x}-3 x$.
(a) (5 points) Show that this function has one root r on $(-\infty, \infty)$. Graph this function on the interval $[-1,1]$
(b) (5 points) Find the least number of iterations that provide an approxximation to r within 5 significant figures using the bisection method.

> Number of iterations :

IN WHAT FOLLOWS CARRY ALL YOUR COMPUTATIONS WITH AT LEAST 5 FIGURES

(c) (10 points) Compute the following iterations:
-Give the sequence of 2 approximations obtained by applying 3 iterations of the bisection method.

$x_{1}:$	
$x_{2}:$	

-Give the iteration function $r_{n}=g\left(r_{n-1}\right)$ of Newton's method :

Then compute the sequence of 2 approximations obtained by applying 2 iterations of Newton's method with $x_{0}=0.5$.

$x_{1}:$	
$x_{2}:$	

-Give the iteration function $r_{n}=g\left(r_{n-1}, r_{n-2}\right)$ of the secant method:

Then give the sequence of 2 approximations obtained by applying 2 iterations of the secant method with $x_{0}=1$ and $x_{1}=0.5$.

$x_{1}:$	
$x_{2}:$	

