AMERICAN UNIVERSITY OF BEIRUT Faculty of Arts and Sciences Computer Science Department

CMPS 251 MID TERM EXAMINATION SUMMER 2003-2004 Closed Book, One hour 15 minutes

SUBMIT THE QUESTION SHEET WITH BOOKLET (ONLY NON-PROGRAMMABLE AND NON-GRAPHIC CALCULATORS ARE ALLOWED)

STUDENT NAME	
ID NUMBER	

1. Let $x \in \mathbb{F} \equiv \mathbb{F}(b, p, e_{min}, e_{max})$, with $x = \pm m \times b^e$.

-(5 points) Fill in the bounds on m

 $\ldots \ldots \le m \le \ldots$

and if $m_2 = succ(m_1)$, both m_1 and m_2 mantissas in \mathbb{F} , find $m_2 - m_1$.

 $m_2 - m_1 = \dots$

-(10 points)Fill in the missing statements in the following MATLAB program that generates the positive elements of a floating-point system $\mathbb{F}(b, p, e_{min}, e_{max})$.

```
function x=float(b,p,emin,emax)
x=0;
epsm=b^(-p+1);
%M represents all possible values taken by the mantissa
M=.....;
E=b^emin;
for .....;
x=[x M*E];
E=E*....;
end
```

-(5 points) How many floating-point operations (additions and multiplications) would be required to execute the above program.

- 2. Consider the floating-point system $\mathbb{F} = \mathbb{F}(10, 6, -4, 5)$. This system uses rounding to the closest.
 - (a) Fill in the following table. (10 points)

Values of following parameters and elements in IEEE single precision system		
x_{\min}		
x_{\max}		
ϵ_M (epsilon machine)		
Representation of $\frac{1}{7}$		
$\operatorname{succ}(\frac{1}{7})$		

(b) (10 points) Convert $x = (52.225)_{10}$ into octal form? Give then the hexadecimal form of the internal IEEE single precision floating point representation of x, using rounding to the closest.

Conversion of $x = (52.225)_{10}$	to octal and IEEE hexadecimal form
Corresponding octal form	
Corresponding IEEE hexadecimal form	

- 3. Consider the function $f(x) = e^{-x} 3x$.
 - (a) (5 points) Show that this function has one root r on $(-\infty, \infty)$. Graph this function on the interval [-1, 1]

(b) (5 points) Find the least number of iterations that provide an approximation to r within 5 significant figures using the bisection method.

Number of iterations :

IN WHAT FOLLOWS CARRY ALL YOUR COMPUTATIONS WITH AT LEAST 5 FIGURES

(c) (10 points) Compute the following iterations :

-Give the sequence of 2 approximations obtained by applying 3 iterations of the bisection method.

x_1 :	
x_2 :	

-Give the iteration function $r_n = g(r_{n-1})$ of Newton's method :

Then compute the sequence of 2 approximations obtained by applying 2 iterations of Newton's method with $x_0 = 0.5$.

x_1 :	
x_2 :	

-Give the iteration function $r_n = g(r_{n-1}, r_{n-2})$ of the secant method :

Then give the sequence of 2 approximations obtained by applying 2 iterations of the secant method with $x_0 = 1$ and $x_1 = 0.5$.

x_1 :	
x_2 :	