Final Exam

Instructors: F. Abu Salem and G. Turkiyyah Name:

Duration: 120 minutes

Notes:

1. You are allowed to use no more than two $A 4$ pages of notes (front and back).
2. This exam consists of seven questions. Make sure you have all of them.

Question 1

(a) Let f be an infinitely differentiable function in a closed interval $I=[\alpha, \beta]$. Let h be any value such that $x+h \in I$ and consider $a, b \in \mathbb{R}$. Use Taylor series to show that f^{\prime} can be approximated using the formula

$$
\begin{equation*}
f^{\prime}(x) \approx \frac{1}{(b-a) h}[b f(x+h)-f(x+a h)-(b-1) f(x)] \tag{1}
\end{equation*}
$$

(b) Establish the error term for Equation (1) above.

Solution:

Solution cont'd:

F-2

Consider the following system of equations:

$$
\left\{\begin{aligned}
x_{1}+\alpha x_{2}-3 x_{3} & =7 \\
12 x_{1}+12 \alpha x_{2}+x_{3} & =121 \\
\alpha x_{1}+4 x_{2}+2 x_{3} & =6
\end{aligned}\right.
$$

where $\alpha \in \mathbb{R}$. For which values of α does the above system possess

1. no solution?
2. infinitely many solutions?
3. a unique solution (to be determined if it exists)?

Solution:

Solution cont'd:

A symmetric pentadiagonal system is a pentadiagonal system in which the subdiagonals are the same as the superdiagonals.
(a) Develop a pseudo-code to solve a symmetric pentadiagonal system using scaled partial pivoting.
(b) Determine the operational count (run-time in terms of the input size) of your pseudocode.
(c) Is this more efficient than the pseudo-code for solving general pentadiagonal systems? Justify your answer in terms of operational and/or spatial costs, whenever applicable. (7pts)

Solution:

Solution cont'd:

Question 4

(a) What is the minimum number of sub-intervals required to insure that the error in approximating $\int_{1}^{2} \ln x^{3} d x$ using the trapezoid rule is less than 5×10^{-5} ?
(b) Consider the integral $\int_{0}^{1} e^{x} d x$.

- Use the trapezoid rule to find the value of the integral with 2 , 4 , and 8 sub-intervals. (5pts)
- Use Romberg integration to obtain the best approximation of the integral from the results above.
(5pts)
- What is the order of the approximation of the Romberg rule above? (i.e., what is the value of k if the error is written as $O\left(h^{k}\right)$ where h is the interval size).

Solution:

Solution cont'd:
(a) Consider the trapezoid rule for the interval $[0,1]$ using $n+1$ equally spaced points. Explain why the composite trapezoid rule can be expressed as

$$
\int_{0}^{1} f(x) d x \approx \frac{h}{2}\left[f(0)+2 \sum_{i=1}^{n-1} f\left(\frac{i}{n}\right)+f(1)\right]
$$

where h is the step size.
(b) Rewriting the above expression as

$$
\int_{0}^{1} f(x) d x \approx \sum_{i=0}^{n} A_{i} f\left(\frac{i}{n}\right)
$$

how would the A_{i} 's be defined?
(c) Consider the composite trapezoid rule for double integration of bivariate functions over the unit square $[0,1] \times[0,1]$:

$$
\int_{0}^{1} \int_{0}^{1} f(x, y) d x d y \approx \sum_{i=0}^{n} \sum_{j=0}^{n} A_{i} A_{j} f\left(\frac{i}{n}, \frac{j}{n}\right)
$$

Use the above expression to develop a pseudo-code approximating

$$
\begin{equation*}
\iint e^{-\left(x^{2}+y^{2}\right)} d x d y \tag{10pts}
\end{equation*}
$$

over the unit square.

Solution:

Solution cont'd:

Consider an iterative solution of the following 2×2 set of linear equations:

$$
\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right\}=\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}
$$

(a) Determine the Jacobi iteration matrix.
(b) Will Jacobi converge? Why or why not?
(c) Perform one iteration of Jacobi with the starting value $x^{0}=(0,0)$.

Solution:

Solution cont'd:
(a) Determine the values of a and b that make the function

$$
f(x)= \begin{cases}x^{2} & x \in[0,1] \tag{4pts}\\ \frac{1}{2}(x-1)^{2}+a(x-1)+b & x \in[1,3]\end{cases}
$$

a quadratic spline.
(b) In class, we considered the problem of interpolating $n+1$ data points with coordinates $\left(x_{i}, y_{i}\right), i=1, \cdots, n+1$, using a quadratic spline $Q(x)$. The continuity and smoothness conditions at x allowed us to express the n spline segements as:

$$
q_{i}(x)=\frac{z_{i+1}-z_{i}}{2\left(x_{i+1}-x_{i}\right)}\left(x-x_{i}\right)^{2}+z_{i}\left(x-x_{i}\right)+y_{i}, \quad x \in\left[x_{i}, x_{i+1}\right]
$$

where $z_{i+1}=2 \frac{y_{i+1}-y_{i}}{x_{i+1}-x_{i}}-z_{i}, z_{i}=Q^{\prime}\left(x_{i}\right)$. In order to determine the parameters z_{i} uniquely we needed one additional condition. In class, we imposed $z_{1}=0$ and used it to compute the remaining z_{i} 's.

- Explain how you would compute the unknown coefficients z_{i} if the extra condition becomes alternatively $z_{1}=z_{2}$.
- What is the geometric interpretation of this condition?

Solution:

Solution cont'd:

