AMERICAN UNIVERSITY OF BEIRUT Faculty of Arts and Sciences Mathematics Department

MATH 251 FALL 2000 FINAL EXAM

Wednesday Jan. 31st, 2001; 2:00-4:00 pm

Closed Book, Two hours Calculators are allowed

- 1. Consider a set of data $\{(x_i, y_i) | i = 1, ..., n\}$, with $x_i \neq x_j, i \neq j$.
 - State and prove the theorem on the existence and uniqueness of the Lagrange interpolation polynomial $p_{n-1}(x)$

$$p_{n-1}(x_i) = y_i, i = 1, ..., n.$$

(10 points)

 Write the MATLAB function Y=DivDiff(x,y) that constructs the divided difference table associated with the data

$$\{(x_i,y_i)|i=1,..,n\}.$$

The input data are the column vectors of length n x, y. The output $n \times n$ matrix Y is lower-triangular, such that the first column of Y is the vector column y. (10 points)

2. Consider a uniform partition of the interval [a,b] into n equidistant intervals of length $h = \frac{b-a}{n}$:

$$a = x_1 < x_2 = a + h < \dots < x_i = a + (i - 1)h < \dots < x_{n+1} = a + nh = b.$$

Let f(x) be a function defined on [a, b], with $f, f', ..., f^{(4)}$ continuous on [a,b]. $(f \in C^4([a,b]))$. We adopt the following notations : $\{f_i = f(x_i), i = 1, ..., n + 1\}$ and $f_{i+\frac{1}{2}} = f(x_{i+\frac{1}{2}})$ where $x_{i+\frac{1}{2}} = \frac{x_i + x_{i+1}}{2}$, is the middle point of the interval $[x_i, x_{i+1}]$, i=1,...,n. Let $I=\int_a^b f(x)dx$.

ullet Derive the composite trapezoïdal rule T(h) to approximate I.Give (without proof) the expression of I - T(h) (5 points).

- Derive the composite Simpson's rule S(h) to approximate I. Give (without proof) the expression of I S(h). (5 points)
- Show that

$$3S(h) = T(h) + 2h \sum_{i=1}^{n} f_{i+\frac{1}{2}}.$$

(5 points)

• By writing $T(h) = \frac{h}{2}(f_1 + f_{n+1}) + \sum_{i=2}^{n} f_i$, show that :

$$2T(\frac{h}{2}) = T(h) + h \sum_{i=1}^{n} f_{i+\frac{1}{2}}.$$

(5 points)

- Derive the relationships between T(h), $T(\frac{h}{2})$ and S(h). (5 points)
- Consider the following table of data, associated with f(x) on the interval [0,2].

\boldsymbol{x}	f(x)
0.00	1.000
0.25	1.284
0.50	1.649
0.75	2.117
1.00	2.718
1.25	3.490
1.50	4.482
1.75	5.755
2.00	7.389

Find T(1), T(0.5), T(0.25), S(0.25). (10 points)

3. Assume that $f \in C^2([a,b])$ and that c is a unique **simple root** of the function f(x), in the interval [a,b], i.e. f(c)=0, $f'(c)\neq 0$. Give Newton's (Newton-Raphson) iterative procedure to find c and prove that, if $\{x_k|, k=0,1,\ldots\}$ is the sequence of iterants of this method then:

$$\lim_{k\to\infty}\frac{|x_{k+1}-c|}{|x_k-c|^2}=M.$$

where M is a constant depending on the function f. Find M. (10 points)