

AMERICAN UNIVERSITY OF BEIRUT Faculty of Arts and Sciences Mathematics Department

MATH 251 FINAL EXAMINATION FALL 2001

Closed Book, 2H1/2

GIVE YOUR ANSWERS ON THE QUESTION SHEET. SUBMIT YOUR SCRATCH SHEET.

STUDENT NAME		
ID NUMBER	* <u></u>	

In the next 2 problems, we consider the IEEE single precision floating point number system. If s, where the storage of a number in IF s uses a 32 bits word, in the following way:

1 bit for s | 8 bits for (e-127) | 23 bits for f part of mantissa Figure. A word of 32 bits to store $x = (-)^s(1.f) \times 2^e$.

1. Convert the following decimal numbers using the formats indicated in the following table. Fill in the empty cases:

Numbers	Corresponding $\pm (1.f)2^{\epsilon}$ form	Corresponding hexadecimal form
$(-52.234375)_{10}$		
$\frac{1}{4}$		
$\operatorname{succ}(\frac{1}{4})$,	
$\operatorname{prev}(\frac{1}{4})$		

AMERICAN UNIVER

LIBRARY

OF BEIRUT

Note: For $x \in \mathbb{F}_s$, $\operatorname{succ}(x)$ and $\operatorname{prev}(x)$ are in \mathbb{F}_s , the closest numbers to x, such that $\operatorname{prev}(x) < x < \operatorname{succ}(x)$.

2. Fill in the cases to give the decimal values corresponding to the following IEEE single precision representations:

Hexadecimal representation	Fill in decimal values
$[45DE4000]_{16}$	

3. Give (by filling the appropriate case) equivalent mathematical expressions that avoids loss of significant figures, when computing the following functions f(x) for x taking values in a specific domain.

Case 1		Equivalent form for $f(x)$
$f(x) = \sqrt{1 + x^2} - x$	when $x \to +\infty$	
Case 2		Equivalent form for $f(x)$
$f(x) = \tan(x) - \sin(x)$	when x is near 0	
		l .

4. Give the minimum number of arithmetic operations (additions, subtractions and multiplications) to compute the following polynomials

Polynomial $p(x)$	Minimum number of operations
$3x^{32} + x^{65}$	
$\frac{6(x-1)^5 + 9(x-1)^9 + 3(x-1)^{17} - (x-1)^{33}}{6(x-1)^5 + 9(x-1)^9 + 3(x-1)^{17} - (x-1)^{17}}$	

- 5. Consider the function $f(x) = x^3 2\sin(x)$.
 - (a) Graph ON THE SCRATCH SHEET, the function f(x) on (-1.5, 1.5).
 - (b) How many roots does the function $f(x) = x^3 2\sin(x)$ have on $(-\infty, \infty)$?

- (c) Consider the root r located on the interval [0.5, 1.5].
 - Find the least number of iterations that provide an approxximation to r within 7 significant figures using the bisection method.

Number of iterations:	

In applying Newton's method to find r, give the interval $[a,b] \subset [0.5,1.5]$, for which a choice of the initial value x_0 in [a,b] does not lead to a converging sequence.

Interval $[a, b]$:	
mervar[a, o].	

• Based on the function f, give the formulae of the iterative schemas that generate the sequence of approximations: $x_0, x_1, ...$ for respectively Newton's method and secant method.

1	
Newton's method:	$x_n =$
Secant method	$x_n =$

IN WHAT FOLLOWS CARRY ALL YOUR COMPUTATIONS WITH AT LEAST 5 FIGURES

• Give the sequence of 2 approximations obtained by applying 2 iterations of Newton's method with $x_0 = 1$.

x_1 :	
44.7	
x_2 :	· .

• Give the sequence of 2 approximations obtained by applying 2 iterations of the secant method with $x_0 = 1.5$ and $x_1 = 1$.

١	x_2 :	
	23:	

6. A function f is given on a set of uniformly spaced data: $\{x_i|i=0,..,n\}$, where n is a positive integer and $h=x_{i+1}-x_i$:

Xi	1.8	1.9	2.0	2.1	2.2
$f(x_i)$	3.1268	3.2871	3.4556	3.6328	3.8190
_ (1/	ـــــــــــــــــــــــــــــــــــــ			h _1	'د

(a) To interpolate using a degree 3 polynomial for finding an approximation to f(1.92), which points would lead to the best approximation?

Points x_i to be used :

(b) Obtain an approximation to f(1.85) using second degree polynomial interpolation. Carry your computations with 5 figures.

Value of approximation to f(1.85):

(c) Assume f(x) is differtiable up to any order, i.e. $f \in C^k$, $\forall k$. Using Taylor's series expansion around x_i , give only the **first term** in each of the following:

(i)
$$f_i'-\frac{f_{i+1}-f_{i-1}}{2h}=c_1h^\alpha+c_2h^\beta+\dots$$
 and

(ii)
$$f_i^{*} - \frac{f_{i+1} - 2f_i + f_{i-1}}{h^2} = d_1 h^{\gamma} + d_2 h^{\delta} + \dots$$

in terms of h and one of the derivatives of f.

$f_i' - \frac{f_{i+1} - f_{i-1}}{2h}$	$c_1 =$	$\alpha =$	
$f^{::}_{i} - \frac{f_{i+1} - 2f_{i} + f_{i-1}}{h^{2}}$	$d_1 =$	$\gamma =$	-

(d) Using $\phi_{c,h} = \frac{f_{i+1}-2f_i+f_{i-1}}{h^2}$, obtain the best approximation to f''(2.0) using the above data, successively with $h_0 = 0.2$ and $\frac{h_0}{2} = 0.1$, followed by one Richardson extrapolation. Fill in the empty cases.

h	$\phi_{c,h}$	$\phi_{c.h}^{(1)}$
h_0	-	×
		×
$\frac{h_0}{2}$		

(e) Use Romberg integration with $h_0 = 0.4$, to obtain approximations to $\int_{1.8}^{2.2} f(x)dx$. Subsequently, fill in the empty cases in the following table:

h	T_h	$T_h^{(1)}$	$T_h^{(2)}$
h_0		×	×
		×	×
$\frac{h_0}{2}$,		×
-			×
$\frac{h_0}{4}$		7 7	
ъ.	′	3,0	

Reminder: The first column is computed using the composite trapezoidal rule; the next two are obtained through Richardson extrapolations.