

AMERICAN UNIVERSITY OF BEIRUT Faculty of Arts and Sciences Mathematics Department

MATH 251 FINAL EXAM SPRING 2002/03 Closed Book, Two hours

GIVE YOUR ANSWERS ON THE QUESTION SHEET SUBMIT WITH BOOKLET

STUDENT NAME		
ID NUMBER	,	
Section		

- 1. Consider the function $f(x) = e^{-x} x^3$.
 - (a) Prove that this function has one single positive root r on $(-\infty, \infty)$? (**Hint**: You may use an intersection of 2 curves argument)
 - (b) Sketch on THE BOOKLET, the function f(x) on (0,2).
 - (c) Using the bisection method on [0,2], give with justification, the minimum number of iterations n_0 , required to find r with a relative error of 0.5×10^{-5} .

$n_0 =$			
• • •			
1			

(d) Based on the function f, give, with justification, the formulae of the iterative schemes that generate the sequence of approximations, $x_0, x_1, ...$ for respectively Newton's method and secant method.

	Newton's method					
$x_n =$	21-1					
		Secant method				
$x_n =$						

IN WHAT FOLLOWS CARRY ALL YOUR COMPUTATIONS WITH AT LEAST 7 FIGURES

(e)	Give	the	sequence	of 3	approximations	${\bf obtained}$	by	applying	3
	iterat	ions	of Newto	n's m	ethod with $x_0 =$	0.5.			

x_1 :	
x_2 :	
x_3 :	

(f) Give the sequence of 2 approximations obtained by applying 2 iterations of the secant method with $x_0 = 0$ and $x_1 = 1$.

x_2 :	
x_3 :	

2. To perform Gauss elimination for the following quadridiagonal, diagonnaly dominant matrix

One uses the following algorithm:

for i from 1 to n-1
$$l_i = l_i/d_i$$
 $d_{i+1} = d_{i+1} - l_i * u_i$ if iu_{i+1} = u_{i+1} - l_i * v_i end

end

Give the exact number of floating point operations needed to perform this algorithm.

3. Prove that for $k = 1, 2, ..., x^{2^k} = (x^{2^{k-1}})^2$, then give with justification the minimum number of arithmetic operations (additions, subtractions and multiplications) to compute, using nested multiplication, the following polynomials

Polynomial $p(x)$	Minimum number of arithmetic operations
$x^{2^k}: k = 1, 2, \dots$	
$3(x-1)^{32} + (x-1)^{64}$	
$6x^3 + 9x^7 + 3x^{15} - x^{31}$	

4. A function f is given on a set of uniformly spaced data: $\{x_i|i=0,..,n\}$, where n is a positive integer and $h=x_{i+1}-x_i$:

$\mathbf{x_i}$	1.8	1.9	2.0	2.1	2.2
$f(x_i)$	3.1268	3.2871	3.4556	3.6328	3.8190

Compute, the approximations of the definite integral $\int_{1.8}^{2.2} f(x)dx$, using the mid-point rectangular, trapezoidal and Simpson rules followed by Romberg integration, for $h_0 = 0.4$, 0.2, 0.1.

	Mid-point	Trapezoidal	Simpson rule	First Romberg
h	M(h)	T(h)	S(h)	R1(h)
0.4				No fill
0.2				
0.1	No fill	"	No fill	No fill

5. Let $x, y \in \mathbb{F}_s$ be two positive numbers in \mathbb{F}_s , the IEEE simple precision number system, with

$$x = m_x \times 2^{e_x}$$
 and $y = m_y \times 2^{e_y}$,

 $m_x = 1 + a_1 2^{-1} + a_2 2 - 2 + \ldots + a_p 2^{-p} \text{ and } m_y = 1 + b_1 2^{-1} + b_2 2 - 2 + \ldots + b_p 2^{-p},$ and

$$a_i, b_i \in \{0, 1\}, \forall i = 1, ..p,$$

 $e_x, e_y \in S = \{n : -l_1 \le n \le l_2\},$

where S is a set of integers.

(a) Specify the set S and the integer p.

(b) Given x, specify for what values of y, one has ("absorption" of y by x), i.e. $x \oplus y = x$.