

AMERICAN UNIVERSITY OF BEIRUT

Mathematics 251, Final Exam

June 22, 2002

Time = 1 Hour and 50 Minutes

You are allowed to use one standard size formula sheet and a calculator. Please, print your name and your ID number on both the question sheet and the booklet.

Part I: Multiple choice. Please, choose one and only one answer. Each question carries a weight of 10 points.

- 1. Let $f(x) = e^x$. Find a third-degree Taylor polynomial for f(x) expanded about $x_0 = 1$ approximate $e^{0.99}$ using this Taylor polynomial. What is the expected degree of accuracy?

 (a) $10^{-5}/24$ (b) e/24 (c) $10^{-4}e/24$ (d) $10^{-4}e$ (e) none of the above.
- 2. One would like to approximate a root of the equation $x^3 + 4x^2 10 = 0$ in the interval [1,2] using the bisection method. What is the minimum number of iterations that are needed to achieve and accuracy of 10^{-5} (rounded)?
 - (a) 17 b) 34 (c) 100 (d) 120 (e) none of the above.
- 3. You are given the following table of data:

Let A be the estimate of f(1.5) through polynomial interpolation. Later, the value of the function at x=3 became available and was given by f(3)=0.95. Let B be the new estimate of f(1.5) using the new updated data. What is the value of A-B?

- (a) 1/16 (b) 3/16 (c) 1/4 (d) 2 (e) none of the above.
- 4. You are to approximate $I = \int_0^1 \sin(\pi x) dx$ by two methods. Method 1 uses the composite trapezoid rule with two equally divided subintervals, call it I_1 with error E_1 . Method 2 uses the composite trapezoid rule with three equally divided subintervals, call it I_2 with error E_2 . Determine

(a) $\frac{\sqrt{3}}{3} - \frac{1}{2}$ (b) $\frac{-1}{2}$ (c) $\frac{\sqrt{3}}{3}$ (d) $\frac{1}{6}$ (e) none of the above.

- 5. Approximate $\int_0^1 (1+x^2)^{-1} dx$ by using the Romberg method. What is the value of |R(2,1)-R(1,1)| (round your answer to the third decimal place)?
 - (a) 0.000 (b) 0.001 (c) 0.002 (d) 0.003 (e) none of the above
- 6. S(x) is a natural cubic spline for the function $f(x) = sin(\pi x/2) + cos(\pi x/2)$ at knots $x_0 = 0$, $x_1 = 1$, and $x_2 = 2$. What is the coefficient of x^3 in S(x) when $0 \le x \le 1$?
 - (a) -1/3 (b) -1/2 (c) 0 (d) 1/2 (e) none of the above.

Part II: (written questions) Please, show all work!

7. Consider the following linear system of equations:

- (a) Write the above system of equations in it is matrix form, that is, $A\underline{X} = \underline{b}$. (5 pts)
- (b) Find a Lower triangular matrix L and an upper triangular matrix U such that A=LU. (10 pts)
- (c) Find the solution of the above system. (5 pts)
- 8. Consider the following initial value problem:

$$x' = 2xt^{-1} + t^2e'$$

$$x(1) = 0$$

- (a) Show that $x(t) = t^2(e^t + k)$, where k is a constant to be determined, is an exact solution for the above initial value problem. (5 pts)
- (b) Approximate x(1.01) by using one step Euler's method and then by using one step Runge-Kutta method of order 2. (10 pts)
- (c) What method in part (b) gives the better approximation for x(1.01)? (5 pts)