American University of Beirut

N. Nahlus

Math. 241 Final Examination

LIBRARY
OF BEIRUT

<u>Time</u>: 2.5 hrs.

- 1. (i) Show that $GL(n, C)/SL(n, C) \approx C^*$ by applying the Fundamental Theorem of homomorphisms on the det. map.
 - (ii) Show that $GL(n, C) = SL(n, C) \cdot C^{\dagger}I$ is <u>not</u> a direct product for n > 1.
- **2.** Show that $Z_3 \times Z_4 \times Z_5$ is isomorphic to Z_{60} .
- 3. Let G be a group of order 35.

Let A be a subgroup of G of order 7, and let B be a group of order 5.

- (i) show that A is normal in G
- (ii) Show that $Z(G) \neq \{e\}$ by applying the general class equation on A.
- (iii) Conclude that G is abelian as well as cyclic.
- **4-5.** Answer <u>any 3</u> parts of the following: (i) Show that U_{17} is a cyclic group.

(ii) Construct a non-abelian group of order 55.

- (iii) Classify, up to isomorphism, all abelian groups of order 5000.
- (iv) How many conjugates of $a=(1\ 2)o(3\ 4\ 5)$ in S_7 , and list 3 of them, <u>and</u> how many elements commuting with $a=(1\ 2)o(3\ 4\ 5)$ in S_7 , and list 3 of them (<u>Hint</u>: See 6(ii)).
- 6. Let a be an element of a group G. Let [[a]] be the set of conjugates of a in G, and let C be the centralizer of a in G (i.e, those commuting with a),
- (i) Show that the mapping given by $f(gag^{-1}) = gC$ is a well defined bijection from the set [[a]] onto the set of left cosets of C in G,
 - (ii) Conclude that o[[a]] = o(G)/o(C) if $o(G) < \infty$.
- 7. Let G be a p-group, i.e, $o(G) = p^n$ where p is a prime.

If $n \ge 2$, show that G has a normal subgroup of index p^2 .

(Hint: Apply induction and the fact that $Z(G) \neq \{e\}$).

- 8-9. Answer any 2 of the following:
- (i) Let I be an ideal of a ring R. Show that $R/I = \{I+x ; x \in R\}$ is a ring in a natural way. (Check only that the evident multiplication is well-defined.)
 - (ii) Construct a field of 49 elements.
 - (iii) If I is a maximal ideal of a commutative ring R with 1, show that R/I is a field.
- 10. Let T be the subgroup of an abelian group G of all elements of finite order.
- (i) Show that G/T has no elements of finite order (other than the identity element).
- (ii) Show that T is fully invariant in G. (Hint: This is very easy and independent of (i)).
- 11. Show that every finite group other than Z_2 has a non-trivial automorphism. (Hint: First, assume that G is non-abelian)
- 12. Let A and B be two normal subgroups of G. In $G/A \times G/B$, consider the subgroup F of all elements (Ax, By) such that ABx = ABy. Show that $G/(A \cap B) \approx F$.

