Time: 2 Hours January 25, 2006 Prof. H. Abu-Khuzam. MATHEMATICS 241 FINAL EXAMINATION First Semester 2005-2006 Name -----ID -----

1. Suppose that a group G is the <u>internal direct product</u> of its normal subgroups H and K. Prove that $G/H \approx K$.

[9 points]

2. Let G be a finite group of order n. Suppose that $j: G \to H$ is a homomorphism from G <u>onto</u> a group H of order m. Prove that m divides n.

[7 points]

3. Show that the alternating group A_n (n > 1) of all even permutations in S_n has order n!/2 by defining a one-to-one and onto mapping from A_n onto the set B_n of odd permutations in S_n .

[7 points]

4. Let G be a group of order pq, where p, q are primes with p < q. Prove that G has a <u>normal</u> subgroup of order q

[7 points]

5. Let K be a $\underline{\text{cyclic normal}}$ subgroup of a group G . Prove that every subgroup of K is normal in G.

[7 points]

6. Let G be an abelian group. Let $a, b \in G$ such that o(a)=p, o(b)=q, where p and q are distinct primes. Show that o(ab) = pq.

[7 points]

7. Prove that each homomorphism from a field to a ring is either one-to-one or maps everything onto $\{0\}$.

[7 points]

8. Let R be a finite commutative ring with identity. Prove that every prime ideal in R is a maximal ideal.

[7 points]

9. (a) Let R be ring with identity element 1_R . Let $j : R \to S$ be a ring homomorphism from R <u>onto</u> S. Prove that $j(1_R)$ is the identity of S.

[6 points]

(b) Give an example of a ring homomorphism $\mathbf{j} : \mathbf{R}' \to \mathbf{S}'$ of rings with identity such that $\mathbf{j}(\mathbf{1}_{\mathbf{R}'}) \mathbf{1}_{\mathbf{S}'}$

10. Let R be a commutative ring with identity 1. Let M R be an ideal of R such that R/M is a field. Show that for each $r \in R$, $r \notin M$, there exists $s \in R$ such that $rs - 1 \in M$

[8 points]

[6 points]

- 11. Answer **TRUE or FALSE** only: [2 points each, -1/2 point penalty for each wrong answer].
 (a) ----- Z₅ is <u>isomorphic</u> to a <u>subgroup</u> of S₅.
- (b) ----- Let $\mathbf{j}: G \to H$ be a group homomorphism . If G is abelian, then H is abelian.
- (c) ----- If G is a finite cyclic group, then G has a prime order.
- (d) ----- If $j : \mathbb{Z}_7 \to H$ is a nontrivial group homomorphism, then j is one-to-one.
- (e) ----- Let $S = \left\{ \begin{pmatrix} 2a & 2b \\ 2c & 2d \end{pmatrix} : a, b, c, d \in Z \right\}$. Then the ideal S is a prime ideal of the ring of 2×2 matrices over Z.
- (f) ----- The equation $x^2 3x + 2 = 0$ has exactly 2 solutions in the ring Z₆.
- (g) ----- The subset $S = \{(a,a) \in Z \times Z \mid a \in Z\}$ of $Z \times Z$ is an <u>ideal of $Z \times Z$.</u>
- (h) ----- The direct product of two integral domains is an integral domain
- (i) ----- No group of order 20 is simple
- (j) ----- The permutation (1,4,5,6)(2,1,5) is a cycle in S₆.
- (k) ----- If R is a ring of order 7 and $I \neq R$ is a maximalideal in R, then $I = \{0\}$.

[22 points]