American University of Beirut Department of Civil & Environmental Engineering Spring 2015-2016

CIVE 370 CONSTURCTION MATERIALS and TECHNOLOGIES COURSE SYLLABUS

Course Title	:	Construction Materials and Technologies
Course Description	:	A Lecture and Laboratory Course that aims to acquaint students with different
-		construction materials, their characteristics, and the relevant tests according to international
		standards.
Credits	:	3 credits
Instructor(s)	:	Mr. Helmi Khatib and Dr. Ghassan Chehab
Office Hours	:	Dr. Chehab: Bechtel – 4 th floor
		Mr. Khatib: M/T/W/Th from 10:00 to 11:00 am, Irani Building Room 110b
Location	:	Lecture: Irani Oxy Engineering Complex – Room 225
		Lab: Geotechnical Lab, Irani Building, Level 1, Room 111
Textbook	:	"Materials for Civil and Construction Engineers",
		M. Mamlouk and J. Zaniewski, Pearson, latest edition
References	:	
		1- "Fundamentals of Building Construction: Material and Methods", Edward Allen
		& Joseph Iano, 1998
		2- Construction: Principles, Materials, Methods", Harold B.Olin, Walter H. Lewis,
		Sixth ed., 1994
		3- "Civil Engineering Materials", Second Edition, Shan Somayaji

Course Objective: The objective of this course is to introduce civil engineering students to the usage of different construction materials and their applications.

Course Outcome: After completion of this course:

- Students will be able to measure and/or monitor material properties through standardized experimental protocols.
- Students will understand the empirical/mechanistic properties and performance of commonly used construction materials.
- Students will understand the importance of professional and ethical responsibilities in selecting proper materials and material characteristics on structural safety and performance.
- Students will be able to conduct research on specific issues related to construction materials.
- Students will develop their life-long learning skills by conducting studies and reporting results in relation to new or innovative construction materials.
- > Students will have some practice in performing forensic case studies on structures within a team environment.

<u>Attendance Policy</u>: A total of three absences for the semester will be permitted w/o penalty. For every absence beyond the third, **5 points will be deducted from the final course grade**. The student may seek to reverse the above, by presenting a petition along with a documented valid excuse explaining the reasons for absences, to the FEA Academic committee.

Exam: There will be two written Exams, (**30 % each**).

Lab Sessions:

Sessions are divided as follows: 30 min Lecture and 90 min Hands-on experiment

Lab Procedures:

- The class will be divided into 4 groups; every group is assigned to complete 1 project and submit lab reports.
- As a pre-lab duty, the student shall read and understand the corresponding chapter in the textbook.
- Each group will cleanup and be responsible for his work area and equipment.

Daily assignments, laboratory reports, presentations and drop Quizzes (15 %)

Site project - Group work (10 %):

Every group of students is required to visit a construction site or a construction material factory (Buildings, roadways, masonry and tile plants, concrete and asphalt plants, quarries), in order to report and record the use of materials in construction, and step-by-step construction procedures.

Lab testing term project- Group work (15%)

- The performance of students in this project will be evaluated in accordance with several performance indicators (PIs) as outlined below. The performance indicators are designed to measure the level of students' achievement of ABET Program Student Outcome b "An ability to design and conduct experiments as well as to analyze and interpret data,"
- The general PIs are as follows:
 - PI b.1- Ability (of students) to design an experiment.
 - o PI b.2- Ability to conduct an experiment, and
 - <u>PI b.3- Ability to analyze and interpret data.</u>

COURSE OUTLINE

Topic 1: AGGREGATES

Session 1:

Lecture Part	Lab Work
Types of Aggregates	Introduction to lab work and projects
Coarse vs. Fine	Measuring devices
Physical Characteristics of Aggregates	Lab tour
-Size and Gradation (Fineness Modulus)	Forming groups
-Shape and Texture-Flakiness and Elongation	
-Absorption and Specific Gravity	
-Resistance to Degradation and Abrasion	

Topic 2: CONCRETE

Session 2:	
Lecture Part	Lab Work
Cement	Sieve Analysis of Aggregates
-Types of Portland Cements and their uses	Specific Gravity and Absorption of Coarse Aggregate
Mix Design using ACI tables	S Bulk Unit Weight and Voids in Aggregate
<u>Workability</u>	Specific Gravity and Absorption of Fine Aggregate
-The effect of water reducer /on workability.	L.A. Abrasion Test
-The effect of water content on workability	

Session 3:		
Lecture Part	Lab Work	
Additives	Acceptance tests on cement:	
-Chemical Additives: AEA, retarders, etc.	Normal consistency	
-Mineral Additives: fly ash, silica fume, etc.	Time of setting	
Compaction Methods	Soundness	
-Rodding versus Vibration Techniques	Fineness	
Molding Cylinders/Cubes and Curing Methods	Strength	
-Importance of curing, setting time, effect of	Slump of Freshly Mixed Portland Cement Concrete p.496	
humidity, temperature and wind, etc.	Unit Weight and Yield of Freshly Mixed Concrete p.499	
Compressive Strength	Making and Curing Concrete Cylinders and Beams p.506	
	Capping Cylindrical Concrete Specimens with capping Compound p. 510	
	Compressive Strength of Cylindrical Concrete Specimens p. 512	
	Flexural Strength of Concrete p. 515	

Topic 3: ASPHALT Session 4:

Lecture Part	Lab Work
Asphalt Grading	Penetration Test
Asphalt-Concrete Mix Design	Marshall Test
Road structure and Construction	Mix Preparation
-Structural Layers: Subgrade, Sub-base,	Working on the lab project
Base, Asphalt Concrete (AC) Layer	
-Mixing, Placement, and Compaction of Asphalt Layer	

Topic 4: STEEL

Session 5:

Lecture Part	Lab Work
Stress-Strain Diagram of Steel	Tension Test
-Ultimate Strength	Different groups may test different bar sizes. The
-Yielding Strength	ASTM specs include tensile strength and yield
-Percent Elongation	strength for different grades, and minimum
-Area Reduction	percent elongation for different bar sizes.
ASTM Specs for Reinforcing Bars	Impact test on steel
Corrosion-Corrosion mechanism	Hardness test on steel
-Induced problems and failures	Working on the lab project
-Mitigation techniques	

Topic 5: MASONRY

Session 6:	
------------	--

Lecture Part	Lab Work	
Definition	Rebound Number of Hardened Concrete 518	
Stone and brick with binding material (mortar).	Penetration Resistance of Hardened Concrete	
Uses in walls	520	
-Interior vs. exterior	Testing of Concrete Masonry Units 523 Test the lab project samples	
-Load-bearing vs. non load-bearing		
-Solid/hollow vs. framed.		
Properties of bricks		
-Color, texture, size, density		
-Compressive Strength, Tensile Strength		
-Thermal Conductivity, Fire Resistance.		

Topic 6: WOOD Session 7:

Dession 7.	
Lecture Part	Lab Work
Structure and Chemical Composition	Test the lab project samples
-Cellulose-Hemicelluloses-Lignin	
-Extractives	
Types of Wood:-Hardwood—Softwood	
Physical and mechanical properties of wood (moisture content,	
density and strength)	
Defects in Wood	
Treatment and Durability	

Topic 7: COMPOSITES Session 8:

Bession 0.	
Lecture Part	Lab Work
Definition	
• Composite materials can be classified as <i>Microscopic</i>	
or <i>Macroscopic</i>	
Uses of composites in Construction	