Time: 55min

<u>Chem. 101</u> <u>Laboratory Final</u> Thurs. June 11th, 1998 S. Sadek

Name:		
I.D. #:		
Lab. Instructor:		
	Score:	
	I	/ 36
	II	/ 24
	Ш	/ 12
	IV	/i4

V _____/14

Grade:____/ 100

I) (36%)

In the following multiple choice-type questions, circle the letter preceding the best answer:

Hydrogen peroxide is decomposed according to the following unbalanced reaction:

$$H_2O_{2(g)} \longrightarrow O_{2(g)} + H_2O_{(g)}$$

The volume of H_2O produced at S.T.P. if 68.0~g of H_2O_2 are decomposed is equal to:

- a- 11.2 L
- b- 22.4 L
- c- 33.6 L
- d- 44.8 L
- e- 52.8 L

32. 60 g of a sample containing only Na₂CO₃ and NaCl were treated with HCl solution. If 8.80 g. Of CO₂ were evolved, then the sample contains:

- a- 44.0 % NaCl
- b- 23.4% NaCl
- c- 65.0% Na₂CO₃
- d- 44.0% Na₂CO₃
- e- 35.0% Na₂CO₃

An iron ore sample weighing 1.00 g is dissolved in HCl solution:

 $Fe_{(s)} + 2HCl_{(aq)} \longrightarrow FeCl_{2(aq)} + H_{2(g)}$

The solution thus obtained is then titrated with 30ml of $KMnO_4$ 0.30 N to a colorless end point where Fe^{2+} is oxidized to Fe^{3+} . The percent of Fe in the ore sample is:

- a- 0.90%
- b- 90%
- c- 50%
- d- 61%
- e- None of the above; my answer is _____

The fractions by which the original volume of a gas at S.T.P. is multiplied to correct its volume to new conditions is $\frac{298}{273} \times \frac{760}{800}$; the new conditions are:

a- 25°C, 1 atm

b- 298 k, 1 atm

c- 0°C, 1 atm

d- 0°C, 800 torr

e- 25°C, 800 torr

 $NH_{3(g)}$ and $HCl_{(g)}$ are allowed to diffuse through both ends of a 20cm glass tube, when the two gases meet, a white fume forms. The distance X travelled by HCl:

a- $x = (20 - x) (36.5/17)^{1/4}$

b- $x = (20 - x) (17/36.5)^{1/2}$

c- $(20 - x) = x (17/36.5)^{1/2}$

 $d_{NH_3} / d_{HCL} = (M.Wt NH_3 / M.Wt HCl)^{1/2}$

e- None of the above, my answer is _____

The ion that gives a deep blue color with ammonia is:

a- Cu⁺

b- Cl

c- Sb³⁺

d- Cu²⁺

e- NH₄+

II) (24%) Write <u>balanced</u> equations for the following processes:

a-	When oxalic acid is titrated with sodium hydroxide
b-	When Zinc metal reacts with a hydrochloric acid solution
c-	When antimony chloride hydrolyzes in water
d-	When aluminum nitrate solution reacts with thioacetamide
e-	When chromate is converted to dichromate in acidic medium
f-	When ferric nitrate solution reacts with ammonium carbonate
g- 9	When nitrogen dioxide gas is generated from lead nitrate
h-	When iron is heated with sulfur

III) (12%)

A(4%)- Define <u>Titration</u> and name two types of it.

B(8%)- A 3.664 g sample of a monoprotic acid HA was dissolved in water and required 20.27 ml of a 0.1578 M NaOH solution for neutralization.

a- Write the equation of the chemical reaction

b- Calculate the molar mass of the acid

IV) (14%) Sulfuric ions can be oxidized to sulfate ions by dichromate ions in acid solution:

$$Cr_2O_7^{2-} + SO_3^{2-} \longrightarrow Cr^{3+} + SO_4^{2-}$$

a- Balance the above chemical reaction; show the steps.

b- Name the oxidizing agent and the reducing agent.

c- Calculate the molarity of the $K_2Cr_2O_7$ solution if 28.42 ml of the solution react completely with 25.00 ml solution of 0.3143 M Na_2SO_3 .

V) (14%) The solubility of potassium chlorate KClO₃ was determined at different temperatures. The following values were obtained:

 $T(^{\circ}C)$: 10 30 40 50 $S(g/100g H_2O)$: 2. 5 10 15 20

- a- On the graph paper provided, plot the soluibility curve for KClO₃
- b- Determine the solubility at 43°C
- c- Mark on your graph the point that corresponds to $12g / 100g \ H_2O$ at $50^{\circ}C$. Is the solution saturated at this point? If not, to what temperature should it be taken to make it saturated?