Problem 1 (answer on pages $1 \& 2$ of the booklet)

The two parts of the following problem are independent.
(a) Consider the sequences $a_{n}=\cos \left(\frac{\alpha}{2^{n}}\right)$ and $b_{n}=\sin \left(\frac{\alpha}{2^{n}}\right)$
(i) Find $\lim _{n \rightarrow \infty}\left(2^{n} b_{n}\right)$ in terms of the constant \propto.
(ii) Let $c_{n}=a_{1} \times a_{2} \times a_{3} \times \ldots a_{n}$. Prove that the sequence c_{n} converges and find its limit.
(b) Does the series $\sum_{n=1}^{\infty} \frac{1}{\left(1+n^{2}\right) \arctan n}$ converge or diverge?

Problem 2 (answer on pages $3 \& 4$ of the booklet)
Let R be the region in plane bounded between the curves $y=e^{x / 2}, y=e^{x-1}$ and the y -axis. Use the transformation

$$
x=u+v \text { and } y=e^{u}
$$

to rewrite $\iint_{R} \frac{x}{y} d A(x, y)$ as an appropriate integral over some region G in the $u v$ plane. Then evaluate the $u v$ integral.

Problem 3 (answer on pages 5 \& 6 of the booklet)

(a) Use Green's theorem to show that if $D \subset \mathfrak{R}^{2}$ is a bounded region with boundary a positively oriented simple closed curve C, then the area of \mathbf{D} can be calculated by the formula:

$$
\text { Area }=\frac{1}{2} \int_{C}-y d x+x d y
$$

(b) Let D be the region lying inside the ellipse $4 x^{2}+y^{2}=1$ in the xy-plane.
(i) Use part (a) to calculate the area of the ellipse $4 x^{2}+y^{2}=1$.
(ii) Calculate the flux integral $\oint_{D} \vec{F} \cdot \vec{n} d s$ directly, where F is the vector field given by $\vec{F}=x y \vec{\imath}+y \vec{\jmath}$.
(iii) Use Green's theorem to recalculate the flux integral of part (ii).

Problem 4 (answer on pages $7 \& 8$ of the booklet)

Consider the vector field $\vec{F}=(2 x y+\sin y) \vec{\imath}+\left(x^{2}+x \cos y+1\right) \vec{\jmath}$
(a) Show that the vector field F is conservative and find a potential function $f(x, y)$ of F .
(b) Use your answer to part (a) to evaluate the line integral $\oint_{C} F . d r$, where C is the arc of the parabola $y=x^{2}$ going from $(0,0)$ to $(2,4)$.

Problem 5 (answer on page 9 of the booklet)

Let D be the region bounded above by the sphere $x^{2}+y^{2}+z^{2}=4$ and below by the cone $z=\sqrt{3 x^{2}+3 y^{2}}$. Set up, but do not evaluate, the iterated triple integral in cylindrical coordinates that gives the volume of D in the order:
(i) $d z d r d \theta$
(ii) $d r d z d \theta$

Problem 6 (answer on page 10 of the booklet)

Let D be the region bounded between the cylinder $x^{2}+y^{2}=4$ and the cone $z=\sqrt{x^{2}+y^{2}}$. Set up, but do not evaluate, the iterated triple integral in spherical cooridnates that gives the volume of D in the order:
(i) $d \rho d \emptyset d \theta$ (ii) $d \emptyset d \rho d \theta$

Find the volume of the tetrahedron cut from the first octant by the plane $2 x+y+z=2$.

Problem 8 (answer on page 12 of the booklet)

Find the absolute maximum and minimum values of the function $F(x, y, z)=x y z$ on the constraint $x+y+z=1$. For $x, y, z \geq 0$.

Problem 9 (answer on page 13 of the booklet)

If R be the region enclosed by the sphere $x^{2}+y^{2}+z^{2}=1$. Evaluate $\iiint_{R} e^{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}} d v(x, y, z)$.
Problem 10 (answer on pages 14 \& 15 of the booklet)
Consider the function $f(x)=e^{x^{2}}$
a) Write a power series expansion for $f(x)$ about the point $\mathrm{x}=0$. Then find the Taylor polynomials $\mathrm{p} 1(\mathrm{x})$ and $\mathrm{p} 2(\mathrm{x})$ generated by $f(x)$ about $\mathrm{x}=0$.
b) In this part we consider the function $g(x)=2 x e^{x^{2}}$.
(i) Use part (a) to find a power series expansion of $g(x)$ about $x=0$.
(ii) Use power series expansion of $\mathrm{g}(\mathrm{x})$ about the point $\mathrm{x}=0$ to prove that $\int g(x) d x=f(x)$

