Problem 1 (answer on pages 1 & 2 of the booklet)

The two parts of the following problem are independent.

- (a) Consider the sequences $a_n = \cos(\frac{\alpha}{2^n})$ and $b_n = \sin(\frac{\alpha}{2^n})$
 - (i) Find $\lim_{n \to \infty} (2^n b_n)$ in terms of the constant \propto .

(ii) Let $c_n = a_1 \times a_2 \times a_3 \times ... a_n$. Prove that the sequence c_n converges and find its limit.

(b) Does the series $\sum_{n=1}^{\infty} \frac{1}{(1+n^2) \arctan n}$ converge or diverge?

Problem 2 (answer on pages 3 & 4 of the booklet)

Let R be the region in plane bounded between the curves $y = e^{x/2}$, $y = e^{x-1}$ and the y-axis. Use the transformation x = u + v and $y = e^u$

to rewrite $\iint_{R} \frac{x}{y} dA(x, y)$ as an appropriate integral over some region G in the uv plane. Then evaluate the uv integral.

Problem 3 (answer on pages 5 & 6 of the booklet)

(a) Use Green's theorem to show that if $D \subset \Re^2$ is a bounded region with boundary a positively oriented simple closed curve *C*, then the area of **D** can be calculated by the formula:

$$Area = \frac{1}{2} \int_{C} -y dx + x dy$$

- (b) Let D be the region lying inside the ellipse $4x^2 + y^2 = 1$ in the xy-plane.
 - (i) Use part (a) to calculate the area of the ellipse $4x^2 + y^2 = 1$.
 - (ii) Calculate the flux integral $\oint_D \vec{F} \cdot \vec{n} ds$ directly, where F is the vector field given by $\vec{F} = xy \vec{i} + y \vec{j}$.

(iii) Use Green's theorem to recalculate the flux integral of part (ii).

Problem 4 (answer on pages 7 & 8 of the booklet)

Consider the vector field $\vec{F} = (2xy + \sin y)\vec{\iota} + (x^2 + x\cos y + 1)\vec{j}$

- (a) Show that the vector field F is conservative and find a potential function f(x, y) of F.
- (b) Use your answer to part (a) to evaluate the line integral $\oint F dr$, where C is the arc of the parabola $y = x^2$ going
 - from (0, 0) to (2, 4).

Problem 5 (answer on page 9 of the booklet)

Let D be the region bounded above by the sphere $x^2 + y^2 + z^2 = 4$ and below by the cone $z = \sqrt{3x^2 + 3y^2}$. Set up, but <u>do not evaluate</u>, the iterated triple integral in cylindrical coordinates that gives the volume of D in the order:

(i) $dzdrd\theta$ (ii) $drdzd\theta$

Problem 6 (answer on page 10 of the booklet)

Let D be the region bounded between the cylinder $x^2 + y^2 = 4$ and the cone $z = \sqrt{x^2 + y^2}$. Set up, but <u>do not</u> <u>evaluate</u>, the iterated triple integral in spherical cooridnates that gives the volume of D in the order:

(i) $d\rho d\phi d\theta$ (ii) $d\phi d\rho d\theta$

Problem 7 (answer on page 11 of the booklet)

Find the volume of the tetrahedron cut from the first octant by the plane 2x + y + z = 2.

Problem 8 (answer on page 12 of the booklet)

Find the absolute maximum and minimum values of the function F(x, y, z) = xyz on the constraint x + y + z = 1. For $x, y, z \ge 0$.

Problem 9 (answer on page 13 of the booklet)

If R be the region enclosed by the sphere $x^2 + y^2 + z^2 = 1$. Evaluate $\iint_R e^{(x^2 + y^2 + z^2)^{3/2}} dv(x, y, z)$.

Problem 10 (answer on pages 14 & 15 of the booklet)

Consider the function $f(x) = e^{x^2}$

- a) Write a power series expansion for f(x) about the point x = 0. Then find the Taylor polynomials p1(x) and p2(x) generated by f(x) about x = 0.
- b) In this part we consider the function $g(x) = 2xe^{x^2}$.
 - (i) Use part (a) to find a power series expansion of g(x) about x = 0.
 - (ii) Use power series expansion of g(x) about the point x = 0 to prove that $\int g(x) dx = f(x)$

If people do not believe that mathematics is simple, it is only because they do not realize how complicated life is.