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quiz # 2 - solution

1. for each of the following functions, find the domain and the range.

a’) f(x,y,Z):\/9—$2—y2—Z2

D¢ = {(z,y,2) € R*/x? + y? + 22 < 9}; Range: [0,3]; boundary: {2? + y? + 22 = 9}; the

domain is closed cause it contains its boundary, and bounded.

b) g(x,y) = =

D, = {(z,y) € R*/y # 2}; Range: R; boundary: {y = 2?}; the domain is open cause it

does not contain its boundary, and unbounded.

2. remark: take to the same denominator, then use series representation of cos
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at £ = —1, then find f(-1)

3. give the Taylor series expansion of f(z) = (1_1’2)—%_712‘237)

remark: do not derive f directly! use a substitution
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The Taylor series of f at © = —1 is the Maclaurin series of g, hence
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flx) = Z (2n+1 — 2”) (x + 1)" is the Taylor series of f at z = —1

X fn)(—
f(z) = Z fé'l)(m +1)", then by comparison, f(™(—1) =n! x <2n1+1 — 2”)

method 2 : write f in fractions then derive !
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4. find the area inside the circle r = —2 cos @ and outside the circle r =1

remark: sketch the curves; find the points of intersection, then find the area.
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method 1: Area= / ’ 5((—2 cos)?—1)dh = g+\§ (by using the rule cos(260) = 2 cos?  —
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the area can also be calculated by another way

method 2 : (longer!)
Area(R)= m — 2x Area(shaded region)
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— 0 as (z,y) — (0,0),

then by sandwich theorem, f(z,y) — 0 as (z,y) — (0,0)
b. consider the path y = m(z — 1); note that (1,0) belongs to this path!
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flz,m(z 1)) = as (z,y) = (1,0);

the limit depends on m, then by the two path test, f has no limit at (1,0)
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b. f(z)=7+3 +Z ~————— cos(nz +Zb sin(nx)

n=1

T = 7 is a point of dlscontmulty of f; then at x = 7 the series converges to
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split the sum into even and odd gives
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the second term is equal to 0, then 7 = z_: e W

—+00

1
and finally - —_—
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