American University of Beirut
 MATH 201

Calculus and Analytic Geometry III
Fall 2009-2010

quiz \# 2-solution

1. for each of the following functions, find the domain and the range.
a) $f(x, y, z)=\sqrt{9-x^{2}-y^{2}-z^{2}}$
$D_{f}=\left\{(x, y, z) \in \mathbf{R}^{3} / x^{2}+y^{2}+z^{2} \leq 9\right\}$; Range: $[0,3]$; boundary: $\left\{x^{2}+y^{2}+z^{2}=9\right\} ;$ the domain is closed cause it contains its boundary, and bounded.
b) $g(x, y)=\frac{x}{x^{2}-y}$
$D_{g}=\left\{(x, y) \in \mathbf{R}^{2} / y \neq x^{2}\right\}$; Range: \mathbf{R}; boundary: $\left\{y=x^{2}\right\}$; the domain is open cause it does not contain its boundary, and unbounded.
2. remark: take to the same denominator, then use series representation of cos

$$
\begin{aligned}
\lim _{t \rightarrow 0}\left(\frac{1}{2-2 \cos t}-\frac{1}{t^{2}}\right) & =\lim _{t \rightarrow 0}\left(\frac{t^{2}-2+2 \cos t}{t^{2}(2-2 \cos t)}\right)=\lim _{t \rightarrow 0}\left(\frac{t^{2}-2+2\left(1-\frac{t^{2}}{2}+\frac{t^{4}}{24}+o\left(t^{6}\right)\right)}{t^{2}\left(2-2\left(1-\frac{t^{2}}{2}+\frac{t^{4}}{24}+o\left(t^{6}\right)\right)\right)}\right) \\
& =\lim _{t \rightarrow 0}\left(\frac{\frac{t^{4}}{12}+o\left(t^{6}\right)}{t^{4}-\frac{t^{6}}{12}+o\left(t^{6}\right)}\right)=\lim _{t \rightarrow 0}\left(\frac{\frac{1}{12}+o\left(t^{2}\right)}{1-\frac{t^{2}}{12}+o\left(t^{4}\right)}\right)=\frac{1}{12}
\end{aligned}
$$

3. give the Taylor series expansion of $f(x)=\frac{2+x}{(1-x)(1+2 x)}$ at $x=-1$, then find $f^{(n)}(-1)$ remark: do not derive f directly! use a substitution
Let $u=x+1$, then $g(u)=f(u-1)=\frac{u+1}{(2-u)(2 u-1)}=\frac{1}{2-u}+\frac{1}{2 u-1}=\frac{1}{2} \cdot \frac{1}{1-\frac{u}{2}}-\frac{1}{1-2 u}$
The Taylor series of f at $x=-1$ is the Maclaurin series of g, hence
$g(u)=\frac{1}{2} \sum_{n=0}^{\infty}\left(\frac{u}{2}\right)^{n}-\sum_{n=0}^{\infty}(2 u)^{n}=\sum_{n=0}^{\infty}\left(\frac{1}{2^{n+1}}-2^{n}\right) u^{n}$, and
$f(x)=\sum_{n=0}^{\infty}\left(\frac{1}{2^{n+1}}-2^{n}\right)(x+1)^{n}$ is the Taylor series of f at $x=-1$
$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(-1)}{n!}(x+1)^{n}$, then by comparison, $f^{(n)}(-1)=n!\times\left(\frac{1}{2^{n+1}}-2^{n}\right)$
method 2 : write f in fractions then derive !
$f(x)=\frac{2+x}{(1-x)(1+2 x)}=\frac{1}{1-x}+\frac{1}{1+2 x}$
$f^{\prime}(x)=\frac{1}{(1-x)^{2}}-\frac{2}{(1+2 x)^{2}}$
$f^{\prime \prime}(x)=\frac{2}{(1-x)^{3}}+\frac{4}{(1+2 x)^{3}}$, and hence $f^{(n)}(x)=\frac{n!}{(1-x)^{n+1}}+\frac{(-1)^{n} n!2^{n}}{(1+2 x)^{n+1}}$, and then $f^{(n)}(-1)=\frac{n!}{2^{n+1}}-n!2^{n}$
4. find the area inside the circle $r=-2 \cos \theta$ and outside the circle $r=1$
remark: sketch the curves; find the points of intersection, then find the area.
method 1 : Area $=\int_{\frac{2 \pi}{3}}^{\frac{4 \pi}{3}} \frac{1}{2}\left((-2 \cos \theta)^{2}-1\right) d \theta=\frac{\pi}{3}+\frac{\sqrt{3}}{2}$ (by using the rule $\cos (2 \theta)=2 \cos ^{2} \theta-$ 1)
the area can also be calculated by another way
method 2: (longer!)
Area $(\mathcal{R})=\pi-2 \times$ Area(shaded region)

$$
\begin{aligned}
& =\pi-2 \times\left(\int_{\frac{\pi}{2}}^{\frac{2 \pi}{3}} \frac{1}{2}(-2 \cos \theta)^{2} d \theta+\int_{\frac{2 \pi}{3}}^{\pi} \frac{1}{2} d \theta\right) \\
& =\pi-2 \times\left(\int_{\frac{\pi}{2}}^{\frac{2 \pi}{3}}(\cos (2 \theta)+1) d \theta+\int_{\frac{2 \pi}{3}}^{\pi} \frac{1}{2} d \theta\right)
\end{aligned}
$$

$$
=\pi-2 \times\left[\frac{\sin (2 \theta)}{2}+\theta\right]_{\frac{\pi}{2}}^{\frac{2 \pi}{3}}+\frac{\pi}{3}=\frac{\pi}{3}+\frac{\sqrt{3}}{2}
$$

5. a. $\left|\frac{x^{2} y}{2 x^{2}+y^{2}}\right| \leq\left|\frac{x^{2} y}{2 x^{2}}\right| \leq \frac{|y|}{2} \longrightarrow 0$ as $(x, y) \rightarrow(0,0)$,
then by sandwich theorem, $f(x, y) \longrightarrow 0$ as $(x, y) \rightarrow(0,0)$
b. consider the path $y=m(x-1)$; note that $(1,0)$ belongs to this path!
$f(x, m(x-1))=\frac{m(x-1)^{2}}{x^{2}+m^{2}(x-1)^{2}}=\frac{m}{1+m^{2}} \longrightarrow \frac{m}{1+m^{2}}$ as $(x, y) \rightarrow(1,0) ;$
the limit depends on m, then by the two path test, f has no limit at $(1,0)$
6. a. $a_{0}=\frac{1}{2 \pi}\left(\int_{0}^{\pi} x d x+\int_{\pi}^{2 \pi} d x\right)=\frac{\pi}{4}+\frac{1}{2}$
b. $f(x)=\frac{\pi}{4}+\frac{1}{2}+\sum_{n=1}^{+\infty} \frac{1}{\pi} \frac{(-1)^{n}-1}{n^{2}} \cos (n x)+\sum_{n=1}^{+\infty} b_{n} \sin (n x)$
$x=\pi$ is a point of discontinuity of f; then at $x=\pi$ the series converges to $\frac{f\left(\pi^{+}\right)+f\left(\pi^{-}\right)}{2}$ $\frac{\pi}{2}+\frac{1}{2}=\frac{\pi}{4}+\frac{1}{2}+\sum_{n=1}^{+\infty} \frac{1}{\pi} \frac{(-1)^{n}-1}{n^{2}} \cos (n \pi)$
split the sum into even and odd gives
$\frac{\pi}{4}=\sum_{n=1}^{+\infty} \frac{1}{\pi} \cdot \frac{(-1)^{n}-1}{n^{2}} \cdot(-1)^{n}=\sum_{n=0}^{+\infty} \frac{1}{\pi} \cdot \frac{(-1)^{2 n+1}-1}{(2 n+1)^{2}} \cdot(-1)^{2 n+1}+\sum_{n=1}^{+\infty} \frac{1}{\pi} \cdot \frac{(-1)^{2 n}-1}{(2 n)^{2}} \cdot(-1)^{2 n}$ the second term is equal to 0 , then $\frac{\pi}{4}=\sum_{n=0}^{+\infty} \frac{1}{\pi} \cdot \frac{2}{(2 n+1)^{2}}$ and finally $\frac{\pi^{2}}{8}=\sum_{n=0}^{+\infty} \frac{1}{(2 n+1)^{2}}$

