American University of Beirut Faculty of Engineering and Architecture Department of Electrical and Computer Engineering EECE 210 – Electric Circuits-Spring term 2011 Quiz II – Solution # Problem 1 Find V_{Th} with respect to the terminals a-b in the circuit shown below when $v_S = 15 \text{ V}$, $R_1 = R_2 = 150 \Omega$, and b = 1. # Solution $$\begin{split} V_s &= R_1 i_a + R_2 (1+b) i_a \Rightarrow i_a = \frac{V_s}{R_1 + R_2 (1+b)} \\ V_{Th} &= R_2 (1+b) i_a = \frac{R_2 (1+b) V_s}{R_1 + R_2 (1+b)} \end{split}$$ #### Problem 2 Find R_{Th} with respect to the terminals a-b for the circuit in problem 1. #### Solution $$\begin{split} &i_{sc} = (1+b)i_a = (1+b)\frac{V_s}{R_1} \\ &R_{Th} = \frac{V_{Th}}{i_{sc}} = \frac{R_2(1+b)V_s}{R_1 + R_2(1+b)} * \frac{R_1}{(1+b)V_s} = \frac{R_1R_2}{R_1 + R_2(1+b)} \end{split}$$ The switch in the circuit shown below has been closed for a very long time before it opens at t = 0. Find the energy stored in the inductor at $t = 0^+$. #### Solution As the switch has been closed for a long period of time, the inductor acts as a short circuit. Accordingly, we can remove the 48Ω resistor and the current in the inductor is the same as the one in the 8Ω resistor. The total resistance is then given by: $$R_T = (8//40) + 4 = \frac{8*40}{48} + 4 = \frac{20}{3} + 4 = \frac{32}{3}\Omega$$ The total current (the current in the 4Ω resistor) is then given by: $I_4 = \frac{64*3}{32} = 6A$ The current in the $$8\Omega$$ resistor is then: $I_8 = 6 * \frac{40}{48} = 5A$ The total energy stored in the inductor is given by: $W_L = \frac{1}{2}L(I_8)^2 = 4*25 = 100J$ # Problem 4 In the circuit of problem 3, Find i(t) at t = 0.333 s. #### Solution $$R_{eq} = (40 + 8) / \! / 48 = 24 \Omega$$ $$\tau = \frac{L}{R} = \frac{8}{24} = 0.33333$$ $$i(t) = \frac{I_0}{2}e^{-\frac{t}{\tau}} \Rightarrow i(0.333) = \frac{5}{2}e^{-1} = 0.92A$$ Consider the figure shown below, determine the output voltage when I=1 mA #### Solution v_p =0 Volts, then v_n =0 and no currents flow in the 150 Ω resistor. Accordingly, $$i_n = I = \frac{0 - v_{out}}{2.2 \times 10^3} \Rightarrow v_{out} = -2200I$$ #### Problem 6. Consider the Figure shown below, determine the output voltage given that v1=1 volts. # Solution Using voltage divider rule, $$v_p = \frac{8}{8+4}v_1 \Rightarrow \frac{2}{3}v_1 = v_p$$ Determine v_{out} as a function of v_n . $$i_n = 0 \Rightarrow \frac{v_{out} - v_n}{6} + \frac{v_{out} - v_n}{12} = \frac{v_n}{2}$$ $$\frac{v_{\text{out}}}{4} = \frac{3v_{\text{n}}}{4} \Rightarrow v_{\text{out}} = 3v_{\text{n}}$$ $$v_n = v_p \Rightarrow v_{out} = 3v_n = 3\left(\frac{2}{3}\right)v_1 \Rightarrow v_{out} = 2v_1$$ For the circuit shown below, the switch has been in its position for a long period of time. What is the value of the current in the inductor i_L at $t = 0^-$? # Solution The inductor, and before the switch is open, acts as a short circuits. $$i_{20} = \frac{20}{240 + (200 //800)} = 50 \text{mA}$$ $$i_{L} = i_{20} \frac{200}{200 + 800} = 10 \text{mA}$$ #### Problem 8 The figure shown below is equivalent to a single inductor having an equivalent inductance of 15 Henries. Determine L #### Solution The 25 H inductor is in series with a parallel combination of 20H and 60 H inductors. The inductance of the equivalent inductor is: 25+((60*20)/(60+20))=40 H. The 30 H inductor is in parallel with a short circuit, which is equivalent to as short circuit. After making these simplifications, we have $$L_{eq} = L_1 + 10,$$ where $\frac{1}{L_1} = \frac{1}{20} + \frac{1}{40} + \frac{1}{L} \Rightarrow L_1 = \frac{40L}{3L + 40}$ Substituting, we obtain $$L_{eq} = \frac{40L}{3L + 40} + 10 \Rightarrow 3LL_{eq} + 40L_{eq} = 40L + 30L + 400$$ $$L = \frac{400 - 40L_{eq}}{3L_{eq} - 70}$$ #### Problem 9 Find the Thevenin equivalent voltage seen between terminals ab if V1 = 3V and $R1 = 10\Omega$. #### Solution Let V2 be the node voltage to the left of the 5 Ω resistor and V3 to the right. Using Nodal analysis, we have: V2 = 50 Volts and $$\frac{V_3}{20} + \frac{V_3 - 50}{5} + 5 = 0$$ Rearranging the above equation, we obtain $$V_3 + 4V_3 - 200 + 100 = 0 \Rightarrow 5V_3 = 100 \Rightarrow V_3 = 20 \text{ Volts}$$ $$V_3 - V_{ab} = V_1 \Rightarrow V_{ab} = V_3 - V_1 = 20 - V_1$$ The switch was open for a long time before it closes at t=0. Find the voltage across the capacitor after t = 1τ (one time constant after closing the switch) given that $R = 10 \text{ k}\Omega$. # Solution First, let us determine the initial voltage across the capacitor when the switch is open. - 1. Convert the current source in parallel with the 20 K Ω resistir to a voltage source of 2 V in series with this resistor - 2. Combine the two voltage sources into one source of 8 Volts - 3. Use voltage divider rule to obtain the voltage across the $10~\mathrm{K}\Omega$ resistor $$R_{10} = \frac{8*10}{10+5+20+R_1} = \frac{80}{35+R_1} = V_c(0)$$ When the switch is open, the capacitor will discharge through the 10 $K\Omega$ resistor. $$V_c(t) = \frac{80}{35 + R_1} e^{-\frac{t}{\tau}} = \frac{80}{35 + R_1} e^{-1}$$ The switch was closed for a long time. It opens at t=0. Find the total energy stored in the capacitors at t=0, given that $C = 1\mu F$. #### Solution When the switch is closed for a very long period of time, both capacitors acts as open circuits and the voltage across the $5\mu F$ and the capacitor C are the voltages across the $20~K\Omega$ and the $60K\Omega$ resistors, respectively. $$V_{40} = \frac{15*40}{15+20+40} = \frac{15*40}{75} = 8 \text{ Volts}$$ $$V_{20} = \frac{15*20}{15+20+40} = \frac{15*20}{75} = 4 \text{ Volts}$$ Energy stored in the capacitors is given by $$E = \frac{1}{2}(5*10^{-6})(4^2) + \frac{1}{2}(C*10^{-6})(8^2)$$ Joules Assume in the following circuit L_1 =3 H, L_2 =2 H, L_3 =26H, and M=5H. Find the mesh equation around i2. ### Solution $$\begin{aligned} &3i_2 + L_1 \frac{di_2}{dt} - M \frac{di_1}{dt} + l(i_2 - i_1) + L_2 \frac{d}{dt} (i_2 - i_3) = 0 \\ &i_g = i_1 - i_3 \\ &3i_2 + L_1 \frac{di_2}{dt} - M \frac{di_1}{dt} + l(i_2 - i_1) + L_2 \frac{d}{dt} (i_2 - i_1 + i_g) = 0 \\ &L_2 \frac{di_g}{dt} + (L_1 + L_2) \frac{di_2}{dt} - (M + L_2) \frac{di_1}{dt} - i_1 + 4i_2 = 0 \end{aligned}$$ ### Problem 13 In the circuit shown below, find the output voltage V_0 if $V^+=2V$ $V^-=1V$ assuming that all operational amplifiers are ideal and operating in their linear region. ### Solution Voltage at node (a) is equal to $V^+ = 2$ Volts and the voltage at node b is equal to $V^- = 1$ volts. Therefore, the current in the 5K resistor (which is the same in the 10K and 20K resistors) is given by: $$\begin{split} v_a - v_b &= 5*10^3*i \Rightarrow i = 0.2 \text{ mA} \\ v_{01} - v_a &= 20*10^3*0.2*10^{-3} \Rightarrow v_{01} = 4+2 = 6 \text{ volts} \\ v_b - v_{02} &= 10*10^3*0.2*10^{-3} \Rightarrow v_{02} = 1-2 = -1 \text{ volts} \\ V_0 &= \frac{10}{5}(v_{02} - v_{01}) = 14 \text{ volts} \end{split}$$ In the circuit shown below, calculate the maximum power that can be dissipated by R_L if $V_X=6V_L$ #### Solution $\overline{\text{Maximum}}$ power transfer is obtained when the load is equal to R_{TH} . Accordingly, we need to determine the Thevenin equivalent $$R_{Th} = (2+1)/(3+3) = 4.5\Omega$$ $$V_{Th} = 12 - V_{3\Omega}$$ $V_{3\Omega}$ is the voltage across the 3Ω resistor which is obtained by converting the current source parallel to a resistor to a voltage source in series with the resistor, add the two voltage sources, and use voltage divider rule. $$V_{3\Omega} = \frac{(12 - V_x) * 3}{6} = \frac{(12 - V_x)}{2}$$ $$V_{Th} = 12 - \frac{(12 - V_x)}{2} = \frac{12 + V_x}{2}$$ Maximum power transfer is given by: $$P = \frac{V_{Th}^2}{4R_{Th}} = \frac{(12 + V_x)^2}{4*4*4.5} = \frac{(12 + V_x)^2}{4*18}$$ For $$V_x = 6 \text{ volts} \Rightarrow P = \frac{(18)^2}{4*18} = 4.5 \text{ Watts}$$