A

Prof. R. Chedid

K. Kabalan

FACULTY OF ENGINEERING & ARCHITECTURE

SPRING TERM 2010-11

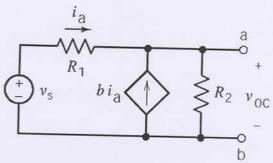
R. Jabr

L. Hamandi

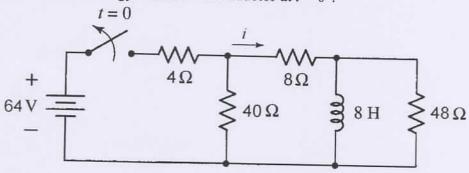
S. Khaddaj

Name:....

May 6, 2011

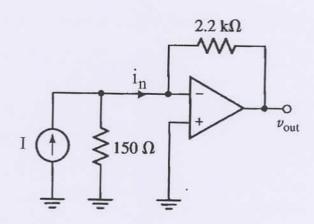

TEST ID: 1000

(EECE210) ELECTRIC CIRCUITS

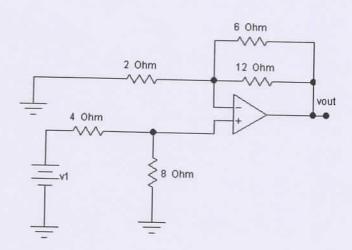

CLOSED BOOK (1 1/4 HRS)

- Programmable Calculators are not allowed
- · Provide your answers on the computer's card only
- Return the computer's card attached to the question sheet
- Mark with a pencil your last name, first name initial (FI) and father's name initial (MI).
- Mark your AUB ID NO. in the box titled "Social Security No."
- The test ID No. is your exam version. Mark it in the box titled 'Test ID".
- · Use pencil for marking your answers
- When using eraser, be sure that you have erased well

1. Find V_{Th} with respect to the terminals a-b in the circuit shown below when $v_S = 15$ V, $R_1 = R_2 = 150 \Omega$, and b = 1.



- a) 10 V
- b) 8 V
- c) 12 V
- d) 14 V
- e) None of the above
- 2. Find R_{Th} with respect to the terminals a-b for the circuit in problem 1.
- a) 10 Ω
- b) 30 Ω
- c) 50 Ω
- d) 70 Ω
- e) None of the above
- 3. The switch in the circuit shown below has been closed for a very long time before it opens at t = 0. Find the energy stored in the inductor at $t = 0^+$.

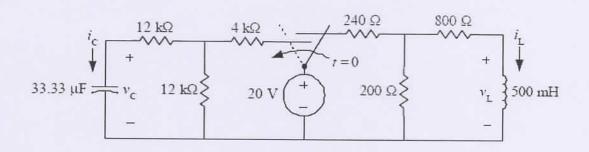


- a) 900 J
- b) 400 J
- c) 200 J
- d) 100 J
- e) None of the above

- 4. In the circuit of problem 3, Find i(t) at t = 0.333 s.
- a) 3.68 A
- b) 0.92 A
- c) 1.84 A
- d) 2.76 A
- e) 5.52 A
- 5. Consider the figure shown below, determine the output voltage when I=1 mA

- a) 2.2 volts
- b) 4.4 volts
- c) 6.6 volts39
- d) 8.8 volts
- e) None of the above
- 6. Consider the Figure shown below, determine the output voltage given that v1=1 volts.

a) $v_{out} = 8 \text{ volts}$


b) $v_{out} = 6 \text{ volts}$

c) $v_{out} = 4volts$

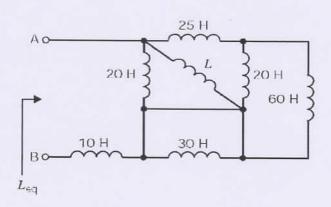
d) $v_{out} = 2 \text{ volts}$

e) None of the above

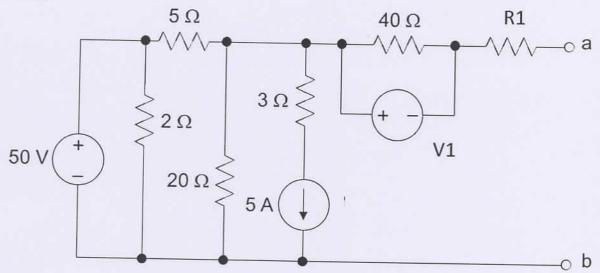
7. For the circuit shown below, the switch has been in its position for a long period of time.

What is the value of the current in the inductor i_L at $t = 0^-$?

a) 0 mA

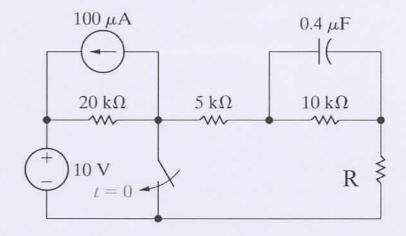

b) 1 mA

c) 10 mA

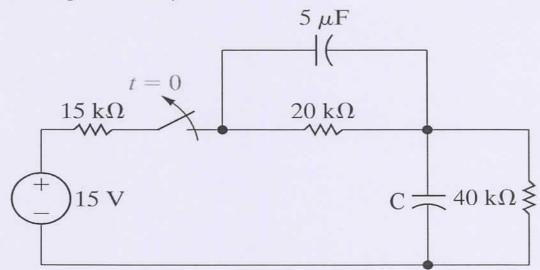

d) 50 mA

e) None of the above

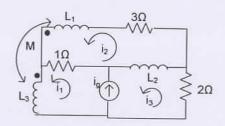
8. The figure shown below is equivalent to a single inductor having an equivalent inductance of 15 Henries. Determine L



- a) L = 8H
- b) L = 20 H
- c) L = 40 H
- d) L= 120 H
- e) None of the above
- 9. Find the Thevenin equivalent voltage seen between terminals ab if V1 = 3V and $R1 = 10\Omega$.


- a) 50V
- b) 13V
- c) 17V
- d) 15V
- e) None of the above

10) The switch was open for a long time before it closes at t=0. Find the voltage across the capacitor after $t = 1\tau$ (one time constant after closing the switch) given that $R = 10 \text{ k}\Omega$.


- a) 0.37 V
- b) 0.65 V
- c) 0.29 V
- d) 1V
- e) None of the above

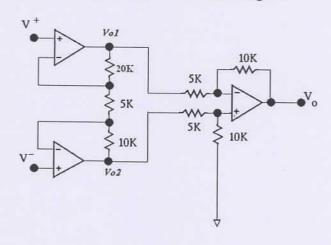
11) The switch was closed for a long time. It opens at t=0. Find the total energy stored in the capacitors at t=0, given that $C = 1\mu F$.

- a) 136 μJ
- b) 104 μJ
- c) 100 µJ
- d) 72 μJ
- e) None of the above

12. Assume in the following circuit L₁=3 H, L₂=2 H, L3=26H, and M=5H. Find the mesh equation around i2.

a)
$$4\frac{dig}{dt} + 7\frac{di2}{dt} - 6\frac{di1}{dt} - i_1 + 4i_2 = 0$$

b) $2\frac{dig}{dt} + 5\frac{di2}{dt} - 7\frac{di1}{dt} - i_1 + 4i_2 = 0$
c) $\frac{dig}{dt} + 2\frac{di2}{dt} - 6\frac{di1}{dt} - i_1 + 4i_2 = 0$
d) $3\frac{dig}{dt} + 7\frac{di2}{dt} - 8\frac{di1}{dt} - i_1 + 4i_2 = 0$
e) None of the above


b)
$$2\frac{dig}{dt} + 5\frac{di2}{dt} - 7\frac{di1}{dt} - i_1 + 4i_2 = 0$$

c)
$$\frac{dig}{dt} + 2\frac{di2}{dt} - 6\frac{di1}{dt} - i_1 + 4i_2 = 0$$

d)
$$3\frac{dig}{dt} + 7\frac{di2}{dt} - 8\frac{di1}{dt} - i_1 + 4i_2 = 0$$

e) None of the above

13. In the circuit shown below, find the output voltage V_0 if $V^+=2V$ $V^-=1V$ assuming that all operational amplifiers are ideal and operating in their linear region.

- a) 14V
- b) -14V
- c) -28V
- d) 28V
- e) None of the above

14. In the circuit shown below, calculate the maximum power that can be dissipated by R_L if Vx=6V.

$$\begin{array}{c|c} & & & \\ & & &$$

- a) 4.5W
- b) 18W
- c) 24.5W
- d) 12W
- e) None of the above