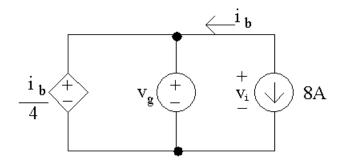
Circuit Elements

Assessment Problems



[a] To find v_g write a KVL equation clockwise around the left loop, starting below the dependent source:

$$-\frac{i_b}{4} + v_g = 0 \qquad \text{so} \qquad v_g = \frac{i_b}{4}$$

To find i_b write a KCL equation at the upper right node. Sum the currents leaving the node:

$$i_b + 8 \mathbf{A} = 0$$
 so $i_b = -8 \mathbf{A}$

Thus,

$$v_g = \frac{-8}{4} = -2\,\mathrm{V}$$

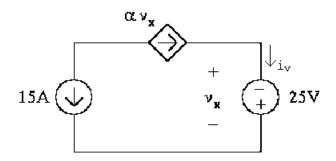
[b] To find the power associated with the 8 A source, we need to find the voltage drop across the source, v_i . To do this, write a KVL equation clockwise around the left loop, starting below the voltage source:

$$-v_q + v_i = 0$$
 so $v_i = v_q = -2$ V

Using the passive sign convention,

$$p_s = (8 \text{ A})(v_i) = (8 \text{ A})(-2 \text{ V}) = -16 \text{ W}$$

Thus the current source generated 16 W of power.



[a] Note from the circuit that $v_x = -25$ V. To find α write a KCL equation at the top left node, summing the currents leaving:

$$15\,\mathrm{A} + \alpha v_x = 0$$

Substituting for v_x ,

 $15 \,\mathrm{A} + \alpha (-25 \,\mathrm{V}) = 0$ so $\alpha (25 \,\mathrm{V}) = 15 \,\mathrm{A}$

Thus $\alpha = \frac{15 \text{ A}}{25 \text{ V}} = 0.6 \text{ A/V}$

[b] To find the power associated with the voltage source we need to know the current, i_v . To find this current, write a KCL equation at the top left node, summing the currents leaving the node:

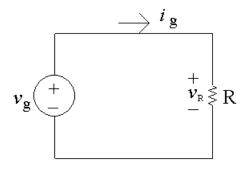
 $-\alpha v_x + i_v = 0$ so $i_v = \alpha v_x = (0.6)(-25) = -15 \text{ A}$

Using the passive sign convention,

$$p_s = -(i_v)(25 \text{ V}) = -(-15 \text{ A})(25 \text{ V}) = 375 \text{ W}.$$

Thus the voltage source dissipates 375 W.

AP 2.3



[a] A KVL equation gives

 $-v_g + v_R = 0$ so $v_R = v_g = 1 \,\mathrm{kV}$

Note from the circuit that the current through the resistor is $i_g = 5$ mA. Use Ohm's law to calculate the value of the resistor:

$$R = \frac{v_R}{i_g} = \frac{1\,\mathrm{kV}}{5\,\mathrm{mA}} = 200\,\mathrm{k\Omega}$$

Using the passive sign convention to calculate the power in the resistor,

$$p_R = (v_R)(i_g) = (1 \,\mathrm{kV})(5 \,\mathrm{mA}) = 5 \,\mathrm{W}$$

The resistor is dissipating 5 W of power.

[b] Note from part (a) the $v_R = v_g$ and $i_R = i_g$. The power delivered by the source is thus

$$p_{\text{source}} = -v_g i_g$$
 so $v_g = -\frac{p_{\text{source}}}{i_g} = -\frac{(-3 \text{ W})}{75 \text{ mA}} = 40 \text{ V}$

Since we now have the value of both the voltage and the current for the resistor, we can use Ohm's law to calculate the resistor value:

$$R = \frac{v_g}{i_g} = \frac{40\,\mathrm{V}}{75\,\mathrm{mA}} = 533.33\,\Omega$$

The power absorbed by the resistor must equal the power generated by the source. Thus,

$$p_R = -p_{\text{source}} = -(-3 \,\text{W}) = 3 \,\text{W}$$

[c] Again, note the $i_R = i_g$. The power dissipated by the resistor can be determined from the resistor's current:

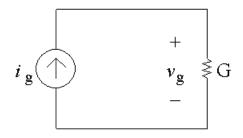
$$p_R = R(i_R)^2 = R(i_g)^2$$

Solving for i_g ,

$$i_g^2 = \frac{p_r}{R} = \frac{480 \text{ mW}}{300 \Omega} = 0.0016$$
 so $i_g = \sqrt{0.0016} = 0.04 \text{ A} = 40 \text{ mA}$
Then, since $v_R = v_g$

$$v_R = Ri_R = Ri_g = (300 \,\Omega)(40 \,\mathrm{mA}) = 12 \,\mathrm{V}$$
 so $v_g = 12 \,\mathrm{V}$

AP 2.4



[a] Note from the circuit that the current throught the conductance G is i_g , flowing from top to bottom (from KCL), and the voltage drop across the current source is v_q , positive at the top (from KVL). From a version of Ohm's law,

$$v_g = \frac{i_g}{G} = \frac{0.5 \,\mathrm{A}}{50 \,\mathrm{mS}} = 10 \,\mathrm{V}$$

Now that we know the voltage drop across the current source, we can find the power delivered by this source:

$$p_{\text{source}} = -v_g i_g = -(10)(0.5) = -5 \,\mathrm{W}$$

Thus the current source delivers 5 W to the circuit.

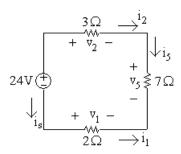
[b] We can find the value of the conductance using the power, and the value of the current using Ohm's law and the conductance value:

$$p_g = Gv_g^2$$
 so $G = \frac{p_g}{v_g^2} = \frac{9}{15^2} = 0.04 \text{ S} = 40 \text{ mS}$
 $i_g = Gv_g = (40 \text{ mS})(15 \text{ V}) = 0.6 \text{ A}$

[c] We can find the voltage from the power and the conductance, and then use the voltage value in Ohm's law to find the current:

$$p_g = G v_g^2$$
 so $v_g^2 = \frac{p_g}{G} = \frac{8 \text{ W}}{200 \,\mu\text{S}} = 40,000$
Thus $v_g = \sqrt{40,000} = 200 \text{ V}$
 $i_g = G v_g = (200 \,\mu\text{S})(200 \,\text{V}) = 0.04 \,\text{A} = 40 \,\text{mA}$

AP 2.5 [a] Redraw the circuit with all of the voltages and currents labeled for every circuit element.



Write a KVL equation clockwise around the circuit, starting below the voltage source:

$$-24\,\mathbf{V} + v_2 + v_5 - v_1 = 0$$

Next, use Ohm's law to calculate the three unknown voltages from the three currents:

$$v_2 = 3i_2;$$
 $v_5 = 7i_5;$ $v_1 = 2i_1$

A KCL equation at the upper right node gives $i_2 = i_5$; a KCL equation at the bottom right node gives $i_5 = -i_1$; a KCL equation at the upper left node gives $i_s = -i_2$. Now replace the currents i_1 and i_2 in the Ohm's law equations with i_5 :

$$v_2 = 3i_2 = 3i_5;$$
 $v_5 = 7i_5;$ $v_1 = 2i_1 = -2i_5$

Now substitute these expressions for the three voltages into the first equation:

$$24 = v_2 + v_5 - v_1 = 3i_5 + 7i_5 - (-2i_5) = 12i_5$$

Therefore $i_5 = 24/12 = 2$ A

- **[b]** $v_1 = -2i_5 = -2(2) = -4$ V
- [c] $v_2 = 3i_5 = 3(2) = 6$ V
- [d] $v_5 = 7i_5 = 7(2) = 14 \text{ V}$
- [e] A KCL equation at the lower left node gives $i_s = i_1$. Since $i_1 = -i_5$, $i_s = -2$ A. We can now compute the power associated with the voltage source:

$$p_{24} = (24)i_s = (24)(-2) = -48 \,\mathrm{W}$$

Therefore 24 V source is delivering 48 W.

AP 2.6 Redraw the circuit labeling all voltages and currents:

We can find the value of the unknown resistor if we can find the value of its voltage and its current. To start, write a KVL equation clockwise around the right loop, starting below the 24Ω resistor:

$$-120 \,\mathrm{V} + v_3 = 0$$

Use Ohm's law to calculate the voltage across the 8Ω resistor in terms of its current:

$$v_3 = 8i_3$$

Substitute the expression for v_3 into the first equation:

$$-120 \,\mathrm{V} + 8i_3 = 0$$
 so $i_3 = \frac{120}{8} = 15 \,\mathrm{A}$

Also use Ohm's law to calculate the value of the current through the 24Ω resistor:

$$i_2 = \frac{120\,\mathrm{V}}{24\,\Omega} = 5\,\mathrm{A}$$

Now write a KCL equation at the top middle node, summing the currents leaving:

$$-i_1 + i_2 + i_3 = 0$$
 so $i_1 = i_2 + i_3 = 5 + 15 = 20$ A

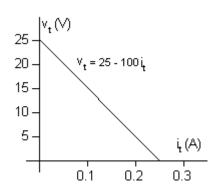
Write a KVL equation clockwise around the left loop, starting below the voltage source:

$$-200 V + v_1 + 120 V = 0$$
 so $v_1 = 200 - 120 = 80 V$

Now that we know the values of both the voltage and the current for the unknown resistor, we can use Ohm's law to calculate the resistance:

$$\mathbf{R} = \frac{v_1}{i_1} = \frac{80}{20} = 4\,\Omega$$

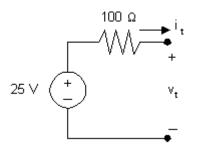
AP 2.7 [a] Plotting a graph of v_t versus i_t gives



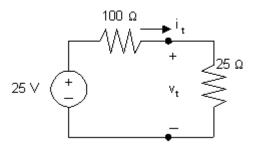
Note that when $i_t = 0$, $v_t = 25$ V; therefore the voltage source must be 25 V. Since the plot is a straight line, its slope can be used to calculate the value of resistance:

$$R = \frac{\Delta v}{\Delta i} = \frac{25 - 0}{0.25 - 0} = \frac{25}{0.25} = 100\,\Omega$$

A circuit model having the same v - i characteristic is a 25 V source in series with a 100Ω resistor, as shown below:



[b] Draw the circuit model from part (a) and attach a 25Ω resistor:



To find the power delivered to the 25Ω resistor we must calculate the current through the 25Ω resistor. Do this by first using KCL to recognize that the current in each of the components is i_t , flowing in a clockwise direction. Write a KVL equation in the clockwise direction, starting below the voltage source, and using Ohm's law to express the voltage drop across the resistors in the direction of the current i_t flowing through the resistors:

$$-25 \text{ V} + 100i_t + 25i_t = 0$$
 so $125i_t = 25$ so $i_t = \frac{25}{125} = 0.2 \text{ A}$

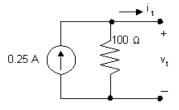
Thus, the power delivered to the $25\,\Omega$ resistor is

$$p_{25} = (25)i_t^2 = (25)(0.2)^2 = 1 \,\mathrm{W}.$$

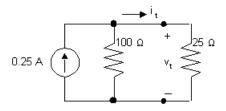
AP 2.8 [a] From the graph in Assessment Problem 2.7(a), we see that when $v_t = 0$, $i_t = 0.25$ A. Therefore the current source must be 0.25 A. Since the plot is a straight line, its slope can be used to calculate the value of resistance:

$$R = \frac{\Delta v}{\Delta i} = \frac{25 - 0}{0.25 - 0} = \frac{25}{0.25} = 100\,\Omega$$

A circuit model having the same v - i characteristic is a 0.25 A current source in parallel with a 100 Ω resistor, as shown below:



[b] Draw the circuit model from part (a) and attach a 25Ω resistor:



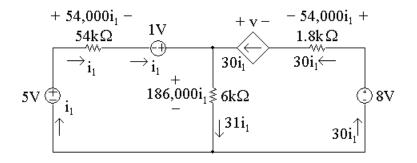
Note that by writing a KVL equation around the right loop we see that the voltage drop across both resistors is v_t . Write a KCL equation at the top center node, summing the currents leaving the node. Use Ohm's law to specify the currents through the resistors in terms of the voltage drop across the resistors and the value of the resistors.

$$-0.25 + \frac{v_t}{100} + \frac{v_t}{25} = 0, \quad \text{so} \quad 5v_t = 25, \quad \text{thus} \quad v_t = 5 \text{ V}$$
$$p_{25} = \frac{v_t^2}{25} = 1 \text{ W}.$$

AP 2.9 First note that we know the current through all elements in the circuit except the 6 k Ω resistor (the current in the three elements to the left of the 6 k Ω resistor is i_1 ; the current in the three elements to the right of the 6 k Ω resistor is $30i_1$). To find the current in the 6 k Ω resistor, write a KCL equation at the top node:

$$i_1 + 30i_1 = i_{6k} = 31i_1$$

We can then use Ohm's law to find the voltages across each resistor in terms of i_1 . The results are shown in the figure below:



[a] To find i_1 , write a KVL equation around the left-hand loop, summing voltages in a clockwise direction starting below the 5V source:

 $-5 V + 54,000i_1 - 1 V + 186,000i_1 = 0$

Solving for i_1

 $54,000i_1 + 189,000i_1 = 6 V$ so $240,000i_1 = 6 V$

Thus,

$$i_1 = \frac{6}{240,000} = 25\,\mu\text{A}$$

[b] Now that we have the value of i_1 , we can calculate the voltage for each component except the dependent source. Then we can write a KVL equation for the right-hand loop to find the voltage v of the dependent source. Sum the voltages in the clockwise direction, starting to the left of the dependent source:

$$+v - 54,000i_1 + 8 V - 186,000i_1 = 0$$

Thus,

$$v = 240,000i_1 - 8 V = 240,000(25 \times 10^{-6}) - 8 V = 6 V - 8 V = -2 V$$

We now know the values of voltage and current for every circuit element. Let's construct a power table:

Element	Current	Voltage	Power	Power
	(µ A)	(V)	Equation	(µ W)
$5 \mathrm{V}$	25	5	p = -vi	-125
$54\mathrm{k}\Omega$	25	1.35	$p = Ri^2$	33.75
1 V	25	1	p = -vi	-25
$6 \mathrm{k}\Omega$	775	4.65	$p = Ri^2$	3603.75
Dep. source	750	-2	p = -vi	1500
1.8 kΩ	750	1.35	$p = Ri^2$	1012.5
8 V	750	8	p = -vi	-6000

[c] The total power generated in the circuit is the sum of the negative power values in the power table:

 $-125\,\mu W + -25\,\mu W + -6000\,\mu W = -6150\,\mu W$

Thus, the total power generated in the circuit is $6150 \,\mu\text{W}$.

[d] The total power absorbed in the circuit is the sum of the positive power values in the power table:

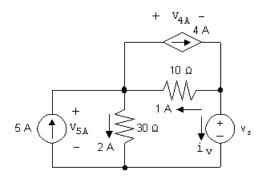
 $33.75 \,\mu\text{W} + 3603.75 \,\mu\text{W} + 1500 \,\mu\text{W} + 1012.5 \,\mu\text{W} = 6150 \,\mu\text{W}$

Thus, the total power absorbed in the circuit is $6150 \,\mu\text{W}$.

AP 2.10 Given that $i_{\phi} = 2 \text{ A}$, we know the current in the dependent source is $2i_{\phi} = 4 \text{ A}$. We can write a KCL equation at the left node to find the current in the 10 Ω resistor. Summing the currents leaving the node,

$$-5 A + 2 A + 4 A + i_{10\Omega} = 0$$
 so $i_{10\Omega} = 5 A - 2 A - 4 A = -1 A$

Thus, the current in the 10Ω resistor is 1 A, flowing right to left, as seen in the circuit below.



[a] To find v_s , write a KVL equation, summing the voltages counter-clockwise around the lower right loop. Start below the voltage source.

$$-v_s + (1 \text{ A})(10 \Omega) + (2 \text{ A})(30 \Omega) = 0$$
 so $v_s = 10 \text{ V} + 60 \text{ V} = 70 \text{ V}$

[b] The current in the voltage source can be found by writing a KCL equation at the right-hand node. Sum the currents leaving the node

$$-4 A + 1 A + i_v = 0$$
 so $i_v = 4 A - 1 A = 3 A$

The current in the voltage source is 3 A, flowing top to bottom. The power associated with this source is

$$p = vi = (70 \,\mathrm{V})(3 \,\mathrm{A}) = 210 \,\mathrm{W}$$

Thus, 210 W are absorbed by the voltage source.

[c] The voltage drop across the independent current source can be found by writing a KVL equation around the left loop in a clockwise direction:

 $-v_{5A} + (2 \mathbf{A})(30 \Omega) = 0$ so $v_{5A} = 60 \mathbf{V}$

The power associated with this source is

$$p = -v_{5A}i = -(60 \text{ V})(5 \text{ A}) = -300 \text{ W}$$

This source thus delivers 300 W of power to the circuit.

[d] The voltage across the controlled current source can be found by writing a KVL equation around the upper right loop in a clockwise direction:

 $+v_{4A} + (10 \Omega)(1 A) = 0$ so $v_{4A} = -10 V$

The power associated with this source is

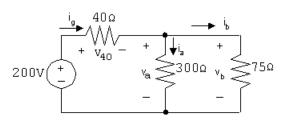
$$p = v_{4A}i = (-10 \text{ V})(4 \text{ A}) = -40 \text{ W}$$

This source thus delivers 40 W of power to the circuit.

[e] The total power dissipated by the resistors is given by

 $(i_{30\Omega})^2(30\,\Omega) + (i_{10\Omega})^2(10\,\Omega) = (2)^2(30\,\Omega) + (1)^2(10\,\Omega) = 120 + 10 = 130\,\mathrm{W}$

Problems



[a] Write a KVL equation clockwise aroud the right loop, starting below the 300Ω resistor:

$$-v_a + v_b = -0$$
 so $v_a = v_b$

Using Ohm's law,

 $v_a = 300i_a$ and $v_b = 75i_b$

Substituting,

 $300i_a = 75i_b$ so $i_b = 4i_a$

Write a KCL equation at the top middle node, summing the currents leaving:

 $-i_g + i_a + i_b = 0$ so $i_g = i_a + i_b = i_a + 4i_a = 5i_a$

Write a KVL equation clockwise around the left loop, starting below the voltage source:

 $-200\,\mathbf{V} + v_{40} + v_a = 0$

From Ohm's law,

 $v_{40} = 40i_q$ and $v_a = 300i_a$

Substituting,

 $-200\,\mathbf{V} + 40i_g + 300i_a = 0$

Subsituting for i_q :

 $-200\,\mathbf{V} + 40(5i_a) + 300i_a = -200\,\mathbf{V} + 200i_a + 300i_a = -200\,\mathbf{V} + 500i_a = 0$ Thus,

 $500i_a = 200 \,\mathrm{V}$ so $i_a = \frac{200 \,\mathrm{V}}{500} = 0.4 \,\mathrm{A}$

[b] From part (a), $i_b = 4i_a = 4(0.4 \text{ A}) = 1.6 \text{ A}$.

[c] From the circuit, $v_o = 75 \Omega(i_b) = 75 \Omega(1.6 \text{ A}) = 120 \text{ V}.$

- [d] Use the formula $p_R = Ri_R^2$ to calculate the power absorbed by each resistor: $p_{40\Omega} = i_g^2 (40 \ \Omega) = (5i_a)^2 (40 \ \Omega) = [5(0.4)]^2 (40 \ \Omega) = (2)^2 (40 \ \Omega) = 160 \ W$ $p_{300\Omega} = i_a^2 (300 \ \Omega) = (0.4)^2 (300 \ \Omega) = 48 \ W$ $p_{75\Omega} = i_b^2 (75 \ \Omega) = (4i_a)^2 (75 \ \Omega) = [4(0.4)]^2 (75 \ \Omega) = (1.6)^2 (75 \ \Omega) = 192 \ W$
- [e] Using the passive sign convention,

$$p_{\text{source}} = -(200 \text{ V})i_g = -(200 \text{ V})(5i_a) = -(200 \text{ V})[5(0.4 \text{ A})]$$

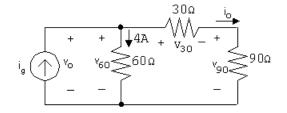
= $-(200 \text{ V})(2 \text{ A}) = -400 \text{ W}$

Thus the voltage source delivers 400 W of power to the circuit. Check:

$$\sum P_{\text{dis}} = 160 + 48 + 192 = 400 \,\text{W}$$

 $\sum P_{\text{del}} = 400 \,\text{W}$

P 2.16



[a] Write a KVL equation clockwise around the right loop:

 $-v_{60} + v_{30} + v_{90} = 0$

From Ohm's law,

 $v_{60} = (60 \,\Omega)(4 \,\mathbf{A}) = 240 \,\mathbf{V}, \qquad v_{30} = 30i_o, \qquad v_{90} = 90i_o$

Substituting,

 $-240 \text{ V} + 30i_o + 90i_o = 0$ so $120i_o = 240 \text{ V}$ Thus $i_o = \frac{240 \text{ V}}{120} = 2 \text{ A}$

Now write a KCL equation at the top middle node, summing the currents leaving:

 $-i_q + 4 \mathbf{A} + i_o = 0$ so $i_q = 4 \mathbf{A} + 2 \mathbf{A} = 6 \mathbf{A}$

[b] Write a KVL equation clockwise around the left loop:

 $-v_o + v_{60} = 0$ so $v_o = v_{60} = 240 \,\mathrm{V}$

[c] Calculate power using p = vi for the source and $p = Ri^2$ for the resistors:

$$p_{\text{source}} = -v_o i_g = -(240 \text{ V})(6 \text{ A}) = -1440 \text{ W}$$

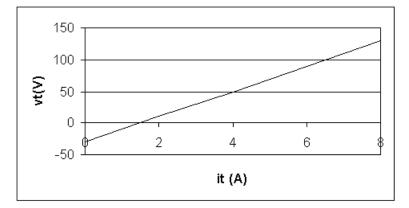
$$p_{60\Omega} = 4^2(60) = 960 \text{ W}$$

$$p_{30\Omega} = 30i_o^2 = (30)2^2 = 120 \text{ W}$$

$$p_{90\Omega} = 90i_o^2 = (90)2^2 = 360 \text{ W}$$

$$\sum P_{\text{dev}} = 1440 \text{ W} \qquad \sum P_{\text{abs}} = 960 + 120 + 360 = 1440 \text{ W}$$

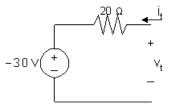
P 2.21 [a] Plot the v—i characteristic:



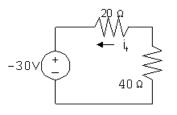
From the plot:

$$R = \frac{\Delta v}{\Delta i} = \frac{130 - (-30)}{8 - 0} = 20\,\Omega$$

When $i_t = 0$, $v_t = -30$ V; therefore the ideal voltage source has a voltage of -30 V. Thus the device can be modeled as a -30 V source in series with a 20Ω resistor, as shown below:



[b] We attach a 40Ω resistor to the device model developed in part (a):



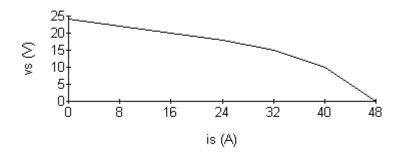
Write a KVL equation clockwise around the circuit, using Ohm's law to express the voltage drop across the resistors in terms of the current i_t through the resistors:

$$-(-30 \text{ V}) - 20i_t - 40i_t = 0$$
 so $-60i_t = -30 \text{ V}$
Thus $i_t = \frac{-30 \text{ V}}{-60} = +0.5 \text{ A}$

Now calculate the power dissipated by the resistor:

 $p_{40\,\Omega} = 40i_t^2 = (40)(0.5)^2 = 10\,\mathrm{W}$

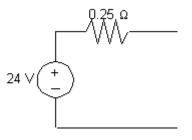
P 2.23 [a] Begin by constructing a plot of voltage versus current:



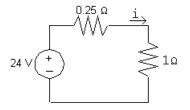
[b] Since the plot is linear for $0 \le i_s \le 24$ A and since $R = \Delta v / \Delta i$, we can calculate R from the plotted values as follows:

$$R = \frac{\Delta v}{\Delta i} = \frac{24 - 18}{24 - 0} = \frac{6}{24} = 0.25\,\Omega$$

We can determine the value of the ideal voltage source by considering the value of v_s when $i_s = 0$. When there is no current, there is no voltage drop across the resistor, so all of the voltage drop at the output is due to the voltage source. Thus the value of the voltage source must be 24 V. The model, valid for $0 \le i_s \le 24$ A, is shown below:



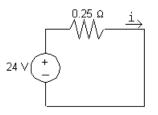
[c] The circuit is shown below:



Write a KVL equation in the clockwise direction, starting below the voltage source. Use Ohm's law to express the voltage drop across the resistors in terms of the current i:

 $-24 \text{ V} + 0.25i + 1i = 0 \qquad \text{so} \qquad 1.25i = 24 \text{ V}$ Thus, $i = \frac{24 \text{ V}}{1.25 \Omega} = 19.2 \text{ A}$

[d] The circuit is shown below:



Write a KVL equation in the clockwise direction, starting below the voltage source. Use Ohm's law to express the voltage drop across the resistors in terms of the current *i*:

$$-24 V + 0.25i = 0$$
 so $0.25i = 24 V$
Thus, $i = \frac{24 V}{0.25 \Omega} = 96 A$

[e] The short circuit current can be found in the table of values (or from the plot) as the value of the current i_s when the voltage $v_s = 0$. Thus,

 $i_{sc} = 48 \,\mathrm{A}$ (from table)

- [f] The plot of voltage versus current constructed in part (a) is not linear (it is piecewise linear, but not linear for all values of i_s). Since the proposed circuit model is a linear model, it cannot be used to predict the nonlinear behavior exhibited by the plotted data.
- P 2.26 [a] Start with the 22.5Ω resistor. Since the voltage drop across this resistor is 90 V, we can use Ohm's law to calculate the current:

$$i_{22.5\,\Omega} = \frac{90\,\mathrm{V}}{22.5\,\Omega} = 4\,\mathrm{A}$$

Next we can calculate the voltage drop across the 15Ω resistor by writing a KVL equation around the outer loop of the circuit:

 $-240 \text{ V} + 90 \text{ V} + v_{15\Omega} = 0$ so $v_{15\Omega} = 240 - 90 = 150 \text{ V}$

Now that we know the voltage drop across the 15Ω resistor, we can use Ohm's law to find the current in this resistor:

$$i_{15\,\Omega} = \frac{150\,\mathrm{V}}{15\,\Omega} = 10\,\mathrm{A}$$

Write a KCL equation at the middle right node to find the current through the 5Ω resistor. Sum the currents entering:

$$4 \mathbf{A} - 10 \mathbf{A} + i_{5\Omega} = 0$$
 so $i_{5\Omega} = 10 \mathbf{A} - 4 \mathbf{A} = 6 \mathbf{A}$

Write a KVL equation clockwise around the upper right loop, starting below the 4Ω resistor. Use Ohm's law to express the voltage drop across the resistors in terms of the current through the resistors:

$$-v_{4\Omega} + 90 \,\mathbf{V} + (5 \,\Omega)(-6 \,\mathbf{A}) = 0$$
 so $v_{4\Omega} = 90 \,\mathbf{V} - 30 \,\mathbf{V} = 60 \,\mathbf{V}$

Using Ohm's law we can find the current through the 4Ω resistor:

$$i_{4\,\Omega} = \frac{60\,\mathrm{V}}{4\,\Omega} = 15\,\mathrm{A}$$

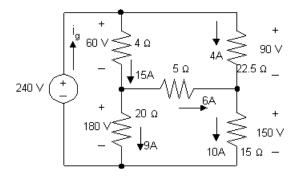
Write a KCL equation at the middle node. Sum the currents entering:

 $15 \mathbf{A} - 6 \mathbf{A} - i_{20\Omega} = 0$ so $i_{20\Omega} = 15 \mathbf{A} - 6 \mathbf{A} = 9 \mathbf{A}$

Use Ohm's law to calculate the voltage drop across the 20Ω resistor:

 $v_{20\,\Omega} = (20\,\Omega)(9\,\mathrm{A}) = 180\,\mathrm{V}$

All of the voltages and currents calculated above are shown in the figure below:



Calculate the power dissipated by the resistors using the equation $p_R = Ri_R^2$: $p_{4\Omega} = (4)(15)^2 = 900 \text{ W}$ $p_{20\Omega} = (20)(9)^2 = 1620 \text{ W}$ $p_{5\Omega} = (5)(6)^2 = 180 \text{ W}$ $p_{22.5\Omega} = (22.5)(4)^2 = 360 \text{ W}$ $p_{15\Omega} = (15)(10)^2 = 1500 \text{ W}$

[b] We can calculate the current in the voltage source, i_g by writing a KCL equation at the top middle node:

$$i_g = 15 \,\mathrm{A} + 4 \,\mathrm{A} = 19 \,\mathrm{A}$$

Now that we have both the voltage and the current for the source, we can calculate the power supplied by the source:

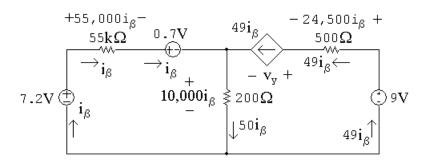
$$p_g = -240(19) = -4560 \text{ W} \quad \text{thus} \quad p_g \text{ (supplied)} = 4560 \text{ W}$$

[c] $\sum P_{\text{dis}} = 900 + 1620 + 180 + 360 + 1500 = 4560 \text{ W}$
Therefore,
 $\sum P_{\text{supp}} = \sum P_{\text{dis}}$

P 2.29 First note that we know the current through all elements in the circuit except the 200Ω resistor (the current in the three elements to the left of the 200Ω resistor is i_{β} ; the current in the three elements to the right of the 200Ω resistor is $49i_{\beta}$). To find the current in the 200Ω resistor, write a KCL equation at the top node:

$$i_{\beta} + 49i_{\beta} = i_{200\,\Omega} = 50i_{\beta}$$

We can then use Ohm's law to find the voltages across each resistor in terms of i_{β} . The results are shown in the figure below:



[a] To find i_{β} , write a KVL equation around the left-hand loop, summing voltages in a clockwise direction starting below the 7.2V source:

 $-7.2 \,\mathrm{V} + 55,000 i_1 + 0.7 \,\mathrm{V} + 10,000 i_\beta = 0$

Solving for i_{β}

 $55,000i_{\beta} + 10,000i_{\beta} = 6.5 \,\mathrm{V}$ so $65,000i_{\beta} = 6.5 \,\mathrm{V}$

Thus,

$$i_{\beta} = \frac{6.5}{65,000} = 100 \,\mu\text{A}$$

Now that we have the value of i_{β} , we can calculate the voltage for each component except the dependent source. Then we can write a KVL equation for the right-hand loop to find the voltage v_y of the dependent source. Sum the voltages in the clockwise direction, starting to the left of the dependent source:

$$-v_y - 24,500i_\beta + 9\,\mathbf{V} - 10,000i_\beta = 0$$

Thus,

$$v_y = 9 \text{ V} - 34,500 i_\beta = 9 \text{ V} - 34,500(100 \times 10^{-6}) = 9 \text{ V} - 3.45 \text{ V} = 5.55 \text{ V}$$

Element	Current	Voltage	Power	Power
	(μA)	(V)	Equation	(μ W)
$7.2\mathrm{V}$	100	7.2	p = -vi	-720
$55\mathrm{k}\Omega$	100	5.5	$p = Ri^2$	550
0.7 V	100	0.7	p = vi	70
200Ω	5000	1	$p = Ri^2$	5000
Dep. source	4900	5.55	p = vi	27,195
500Ω	4900	2.45	$p = Ri^2$	12,005
9 V	4900	9	p = -vi	-44,100

[b] We now know the values of voltage and current for every circuit element. Let's construct a power table:

The total power generated in the circuit is the sum of the negative power values in the power table:

 $-720\,\mu W + -44,100\,\mu W = -44,820\,\mu W$

Thus, the total power generated in the circuit is $44,820 \,\mu$ W. The total power absorbed in the circuit is the sum of the positive power values in the power table:

$$550 \,\mu\text{W} + 70 \,\mu\text{W} + 5000 \,\mu\text{W} + 27,195 \,\mu\text{W} + 12,005 \,\mu\text{W} = 44,820 \,\mu\text{W}$$

Thus, the total power absorbed in the circuit is $44,820 \,\mu\text{W}$ and the power in the circuit balances.