1 PD control / $2^{\text {nd }}$ order system

In this exercise a PD controller is used to control the plant $G(s)=\frac{1}{s(1+2 s)}$ as shown in the figure below:

Figure 1: Closed-loop control of $G(s)$ using a PD controller

The desired specifications are given by:

- Settling time $t_{s} \approx 4$ seconds (2% criterion)
- Overshoot $M_{p} \approx 15 \%$

The appropriate gains K_{P} and K_{D} that satisfy these specifications are:
a) $\quad K_{P}=4$ and $K_{D}=1$
b) $\quad K_{P}=8$ and $K_{D}=3$
c) $\quad K_{P}=16$ and $K_{D}=7$
d) $\quad K_{P}=32$ and $K_{D}=11$
e) None of the above

2 Routh

Consider the block diagram given in the figure below:

Figure 2: Block diagram

Using Routh criterion, we found that to ensure the stability of the system the controller K should be:
a) $\quad K \leq-24$
b) $-24 \leq K \leq 0$
c) $-24 \leq K \leq 24$
d) $0 \leq K \leq 24$
e) $\quad K \geq 24$

3 Steady state error

Given is the block diagram of a robotic vehicle as shown in the figure below.

Figure 3: Robotic vehicle control

The following parameters of the block diagram are given:

- Gain $K=0.5$
- Controller $G_{\mathrm{C}}(s)=K_{1}+\frac{K_{2}}{s}$

Determine the static velocity error constant. Determine K_{2} such that the steady state error to a ramp input $w_{\mathrm{d}}=\frac{1}{s}$ is $e_{\mathrm{ss}}=0.01$.
a) $\quad K_{2}=\frac{0.02}{\tau}$
b) $\quad K_{2}=0.02$
c) $\quad K_{2}=\frac{200}{\tau}$
d) $\quad K_{2}=200$
e) none of the above

4 True or false

The final value theorem is only applicable for stable systems
a) True
b) False

5 True or false

A state space model is a unique representation of a dynamic system
a) True
b) False

6 True or false

It is not possible to eliminate steady state error with open loop control
a) True
b) False

7 True or false

A system of "Type 1" has zero steady state error in response to a step input
a) True
b) False

