Math 223 - Advanced Calculus, Spring 2017 Review exercises, part 3

Exercise 1. (1) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a function of class C^k . Suppose that f(x,0) = 0 for all $x \in \mathbb{R}$. Show that there exists a C^{k-1} function $g : \mathbb{R}^2 \to \mathbb{R}$ such that f(x,y) = yg(x,y). (*Hint*: consider the function $g(x,y) = \int_0^1 \frac{\partial f}{\partial y}(x,ty)dt$).

(2) Let $\rho(x,y) = y - h(x)$ be of class C^k and put $Z = \{\rho = 0\} \subset \mathbb{R}^2$. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be a C^k function vanishing on Z (this means that f(v) = 0 for all $v \in Z$). Show that there exists a C^{k-1} function $g : \mathbb{R}^2 \to \mathbb{R}$ such that $f = \rho g$. (*Hint*: similar to (1) consider $g(x,y) = \int_0^1 \frac{\partial f}{\partial y}(x, (1-t)h(x) + ty)dt)$.

(3) Let $\rho : \mathbb{R}^2 \to \mathbb{R}$ be a C^k function $Z = \{\rho = 0\}$, and suppose that $0 \in Z$ is not a critical point for ρ . Let f be as in (2). Show that in a neighborhood of 0 we have $f = \rho g$ for a certain C^{k-1} function g. (*Hint*: use the implicit function theorem - you can assume that the function obtained by using it is C^k).

(4) With the notation of (3), show that $\nabla f(v)$ is a multiple of $\nabla \rho(v)$ for all $v \in \mathbb{Z}$.

Exercise 2. Let $Z = \{(x, y) \in \mathbb{R}^2 : y = x^2\}$. Using the Lagrange multipliers method (established in the sixth assignment, Ex. 4), find the local maxima and local minima on Z of the following functions $f : \mathbb{R}^2 \to \mathbb{R}$:

(1)
$$f(x, y) = -y;$$

(2) $f(x, y) = x + y;$
(3) $f(x, y) = x^2 + y^2 - 2y + 1.$

Exercise 3. Using the Lagrange multipliers method, find the local maxima and local minima on Z of the following functions $f : \mathbb{R}^2 \to \mathbb{R}$:

(1)
$$f(x, y) = x + y, Z = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$$

(2) $f(x, y) = x^2 + y^2, Z = \{(x, y) \in \mathbb{R}^2 : xy = 1\}.$

Exercise 4. Let $U \subset \mathbb{R}^n$ be an open domain, and let $\Omega^p(U)$ be the vector space of *p*-forms.

(1) Define $\star : \Omega^1(U) \to \Omega^{n-1}(U)$ in the following way: if $\omega = \sum_{j=1}^n f_j dx_j, \ \star \omega = \sum_{j=1}^n (-1)^{j-1} f_j dx_1 \dots dx_{j-1} dx_{j+1} \dots dx_n$. Show that \star is a linear isomorphism.

(2) Associate in the usual way a vector field $F = (f_1, \ldots, f_n)$ to the 1-form $\omega_F = \sum_j f_j dx_j$. Assume n = 3, and let F, G be vector fields. Show that $\star \omega_{F \times G} = \omega_F \omega_G$ (here $F \times G$ is the cross product). (3) From the definition, the product $\omega(\star\omega)$ is an *n*-form. Show that $\int_U \omega(\star\omega) \ge 0$ for all $\omega \in \Omega^1(U)$, and that the equality holds if and only if $\omega = 0$.

 $(4)^{**}$ Show that $\|\omega\| = \int_U \omega(\star \omega)$ defines a norm on $\Omega^1(U)$.

Exercise 5. Let $\psi : \mathbb{R}^n \to \mathbb{R}^n$ be a C^1 diffeomorphism, and let ω be a *p*-form on \mathbb{R}^n . We say that ω is ψ -invariant if $\psi^* \omega = \omega$.

(1) Fix a diffeomorphism ψ . Show that the set of ψ -invariant forms in $\Omega^p(\mathbb{R}^n)$ is a vector space.

(2) Show that if ω, η are ψ -invariant then $\psi\eta$ and $d\omega$ are also ψ -invariant.

(3) Given $\theta \in [0, 2\pi]$, define the (linear) diffeomorphism ψ_{θ} : $\mathbb{R}^2 \to \mathbb{R}^2$ as $\psi_{\theta}(x, y) = ((\cos \theta)x - (\sin \theta)y, (\sin \theta)x + (\cos \theta)y)$ (the rotation of angle θ). Show that the 1-form $(x^2 + y^2)(xdy - ydx)$ is ψ_{θ} -invariant for all $\theta \in [0, 2\pi]$. (*Hint*: the easiest way is to show that $x^2 + y^2$ and xdy - ydx are ψ_{θ} -invariant, and to use (2)).

(4)* Let ψ be a diffeomorphism satisfying $\psi \circ \psi(v) = v$ for all $v \in \mathbb{R}^n$. Show that any *p*-form ω can be written as $\omega = \eta_1 + \eta_2$, where $\psi^* \eta_1 = \eta_1$ and $\psi^* \eta_2 = -\eta_2$.

Exercise 6. Let $\phi : [-1,1] \times [-1,1] \rightarrow \mathbb{R}^3$ be the function defined as $\phi(s,t) = (s+t, s-t, st)$, and put $\Sigma = \phi([-1,1] \times [-1,1])$.

(1) Show that Σ is a regular surface and compute the normal vector at any point.

(2) Let ω be the 2-form $\omega = -dx_2dx_3 - x_1dx_1dx_2$. Compute $\int_{\Sigma} \omega$ (with the orientation on Σ given by ϕ).

(3) Define the vector field F as $F(x_1, x_2, x_3) = (-1, 0, -x_1)$. Check that $\int_{\Sigma} F = \int_{\Sigma} \omega$.

Exercise 7. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be a C^1 function, and suppose that f(0) = 0. Show that there exist continuous functions $g_1, g_2, g_3 : \mathbb{R}^3 \to \mathbb{R}$ such that $f = x_1g_1 + x_2g_2 + x_3g_3$. (*Hint*: fixed $(x_1, x_2, x_3) \in \mathbb{R}^3$ define the function $\ell : \mathbb{R} \to \mathbb{R}$ as $\ell(t) = f(tx_1, tx_2, tx_3)$. Check that $f(x_1, x_2, x_3) = \int_0^1 \ell'(t) dt$. Find $\ell'(t)$ by using the chain rule.)

Exercise 8. Recall that a *regular curve* is a C^1 function $\gamma : [a, b] \to \mathbb{R}^n$ such that $\gamma'(t) \neq 0$ for $t \in [a, b]$.

(1) Let $h : \mathbb{R} \to \mathbb{R}$ be C^1 , and define $Z = \{(x, y) \in \mathbb{R}^2 : y = h(x)\}$. Show that there exists a regular curve $\gamma : \mathbb{R} \to \mathbb{R}^2$ such that $\gamma(\mathbb{R}) = Z$.

(2) Let $\rho : \mathbb{R}^2 \to \mathbb{R}$ be C^1 , and let $Z = \{(x, y) \in \mathbb{R}^2 : \rho(x, y) = 0\}$. Assume that $0 \in Z$ and $\nabla \rho(0) \neq 0$. Show that there exists $\epsilon > 0$ and a regular curve $\gamma : [-\epsilon, \epsilon] \to \mathbb{R}^2$ such that $\gamma([-\epsilon, \epsilon]) \subset Z$. (*Hint*: use the implicit function theorem and (1)).

(3)* Let $Z = \{(x, y) \in \mathbb{R}^2 : x^2 = y^3\}$. Show that there exists no regular curve $\gamma : \mathbb{R} \to \mathbb{R}^2$ such that $\gamma(\mathbb{R}) = Z$.

Exercise 9. Let ρ be a C^1 real function in \mathbb{R}^n , let $Z = \{\rho = 0\}$ and suppose that $\nabla \rho$ does not vanish on Z. Let $\gamma : \mathbb{R} \to \mathbb{R}^n$ be a C^1 curve such that $\gamma(t) \in Z$ for all $t \in \mathbb{R}$. Show that $\gamma'(t)$ is orthogonal (w.r.t. the usual Euclidean product) to $\nabla \rho(\gamma(t))$ for all $t \in \mathbb{R}$.

Let us recall some notation: in \mathbb{R}^n , we denote by ∇ the operator $\nabla = \left(\frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n}\right)$. If f is a C^1 function, the vector field $\nabla f = \left(\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}\right)$ is called the gradient of f, while if $G = (g_1, \ldots, g_n)$ is a C^1 vector field, the function $\nabla \cdot G = \frac{\partial g_1}{\partial x_1} + \ldots + \frac{\partial g_n}{\partial x_n}$ (also written simply ∇G) is called the divergence of G. The composition $\nabla^2 = \nabla \circ \nabla$, also denoted by Δ , is the Laplace operator or Laplacian; for any C^2 function f one has $\Delta f = \frac{\partial^2 f}{\partial x_1^2} + \ldots + \frac{\partial^2 f}{\partial x_n^2}$.

Exercise 10. (1) Let $g : \mathbb{R}^n \to \mathbb{R}$ be a continuous function. Suppose that $\int_B g = 0$ for any ball $B \subset \mathbb{R}^n$. Show that g = 0.

(2) A C^2 function $h : \mathbb{R}^n \to \mathbb{R}$ is called *harmonic* if $\Delta h = 0$. Let now $f : \mathbb{R}^n \to \mathbb{R}$ be a C^2 function, and suppose that we have $\int_{\partial B} \nabla f = 0$ for any ball $B \subset \mathbb{R}^n$. Show that f is harmonic.

Exercise 11. Let $f, g : \mathbb{R}^3 \to \mathbb{R}$ be functions of class C^2 , and let U be a domain of \mathbb{R}^3 whose boundary $bU = \Sigma$ is a regular surface. Show that

$$\int_{U} f\Delta g + \int_{U} \nabla f \cdot \nabla g = \int_{\Sigma} f \nabla g.$$

Exercise 12. We say that a function $f : \mathbb{R}^n \to \mathbb{R}$ has compact support if there exists R > 0 such that f(v) = 0 for all $v \in \mathbb{R}^n$ such that ||v|| > R (in other words f is zero outside a large enough ball). We also say that a *p*-form $\omega = \sum_{i_1,\ldots,i_p} f_{i_1\ldots i_p} dx_{i_1} \ldots dx_{i_p}$ has compact support if all the functions $f_{i_1\ldots i_p}$ have compact support.

(1) Suppose that $\omega \in \Omega_1(\mathbb{R}^2)$ has compact support. Show that there exists R > 0 such that $\int_{B_R(0)} d\omega = 0$.

(2)* Suppose that $f, g : \mathbb{R}^3 \to \mathbb{R}$ have compact support. Show that for R > 0 large enough we have

$$\int_{B_R(0)} f\Delta g = \int_{B_R(0)} g\Delta f.$$