Math 223 - Advanced Calculus, Spring 2017 Review exercises, part 2

Exercise 1. For each one of the following quadratic forms, establish whether it is positive or negative (semi)definite, or indefinite:

- (1) $Q(x_1, x_2) = -4x_1^2 + 12x_1x_2 9x_2^2$ (2) $Q(x_1, x_2) = x_1 x_2$ (3) $Q(x_1, x_2) = x_1^2 + x_1 x_2 + x_2^2$.

Exercise 2. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined as

 $f(x_1, x_2) = x_1^2 - 2x_1x_2 + x_2^2 - x_1^4 - x_2^4.$

(1) Show that $v_0 = (0,0)$ is a critical point of f, and $H_f(v_0)$ is positive semidefinite.

(2) Show that v_0 is neither a local maximum nor a local minimum of f. (*Hint*: consider f(t, 0) and f(t, t) for small |t|).

Exercise 3. Let $L_1 = \{y = c_1 x\}, L_2 = \{y = c_2 x\}$ be two straight lines of \mathbb{R}^2 passing through $v_0 = (0,0)$, and let $f : \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function such that f(v) = 0 for all $v \in L_j$, j = 1, 2.

(1) Let $w_1 = (1, c_1), w_2 = (1, c_2)$. Show that $J_f(v_0) \cdot w_j = 0, j = 0$ 1,2. (*Hint*: one can use the chain rule for a suitable composition, or the mean value theorem along L_i).

(2) Suppose that $c_1 \neq c_2$. Show that v_0 is a critical point of f.

(3) Does it follow that v_0 is extremal for f? (*Hint*: consider for instance $f(x, y) = y^2 - (c_1 + c_2)xy + c_1c_2x^2$.

Exercise 4. Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function of class C^{∞} and suppose that $f(v_0) = 0$. For a given $k \in \mathbb{N}$, define $q = f^{k+1}$. Let P_k be the Taylor polynomial of g about v_0 . Show that $P_k = 0$.

Exercise 5. Compute the second order Taylor polynomial P_2 about $v_0 = (0,0)$ for the following functions:

(1) $f(x_1, x_2) = \log(1 + x_1 + x_2) - \frac{1}{2}(x_1^2 + x_2^2)$ (2) $g(x_1, x_2) = (e^{x_1^2 - x_2^3 + \sin(x_1 x_2)} - 1)^2$.

Exercise 6. Let $f : \mathbb{R} \to \mathbb{R}$ be differentiable.

(1) Suppose that f is a contraction. Show that $|f'(x)| \leq 1$ for all $x \in \mathbb{R}$.

(2) Let $f(x) = a_0 + a_1 x + \ldots + a_n x^n$ be a polynomial. Show that if f is a contraction then it has degree at most one, and furthermore $|a_1| < 1.$

Exercise 7. Let $f : \mathbb{R}^n \to \mathbb{R}^n$ be a function of class C^1 such that $J_f(v)$ is invertible for all $v \in \mathbb{R}^n$.

(1) Suppose that n = 1. Does it follow that $f : \mathbb{R} \to \mathbb{R}$ is invertible?

(2) Same question in the case n = 2. (*Hint*: study the function $f(x, y) = (e^x \cos(y), e^x \sin(y))$.)