Math 223 - Advanced Calculus, Spring 2017 Review exercises

Exercise 1. Verify whether or not the following functions are continuous at the point v = (0,0):

- (1) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \frac{x^3 y^2}{x^2 + y^4}$ if $(x,y) \neq (0,0)$, f(0,0) = 0; (2) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \frac{x^2 y^2}{x^4 + y^4}$ if $(x,y) \neq (0,0)$, f(0,0) = 0; (3) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = \frac{x^2 y^3 + 2xy^4}{(x^2 + y^2)^2}$ if $(x,y) \neq (0,0)$, f(0,0) = 0.

Exercise 2. Let V be a real vector space, and let $\|\cdot\|$ be a norm on V. Recall that the ball of radius r > 0 and center $x \in V$ is the set $B_r(x) = \{v \in V : ||v - x|| < r\}.$

- (1) Show that $||av + bw|| \le |a|||v|| + |b|||w||$ for all $a, b \in \mathbb{R}$ and $v, w \in V$.
- (2) A subset U of V is called *convex* if it satisfies the following property: for all $v, w \in U$ and $0 \le t \le 1$ we have $tv + (1-t)w \in U$. Show that $B_1(0)$ is convex. (*Hint*: use part (1)).
- (3) Show that any ball $B_r(x)$ is convex (*Hint*: one can use for instance (2)).

Exercise 3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined as $f(x_1, x_2) = \cos(x_1 x_2)$. Compute the Hessian matrix of f at a general point $p = (x_1^0, x_2^0) \in$ \mathbb{R}^2 .

Exercise 4. Let V be a vector space. Recall that two norms $\|\cdot\|_1$ and $\|\cdot\|_2$ on V are called equivalent if there are constants C, D > 0such that $C||v||_1 \le ||v||_2 \le D||v||_1$ for all $v \in V$.

- (1) Let $V = \mathbb{R}^n$ with the standard Euclidean norm $\|\cdot\|$, and standard basis e_1, \ldots, e_n . Let $\|\cdot\|_1$ be another norm on \mathbb{R}^n , and define $M = \max\{\|e_1\|_1, \|e_2\|_1, \dots, \|e_n\|_1\}$. Show that $\|v\|_1 \le nM\|v\|$ for all $v \in \mathbb{R}^n$. (*Hint*: consider the case ||v|| = 1 first).
- (2) Let $V = \mathbb{R}^n, \|\cdot\|, \|\cdot\|_1$ be as in (1), and consider in \mathbb{R}^n the Euclidean metric d(x,y) = ||x-y||. Show that the function $\|\cdot\|_1:\mathbb{R}^n\to\mathbb{R}$ is Lipschitz with respect to this metric.
- (3) Show that $\|\cdot\|_1$ admits a maximum D>0 and a minimum C > 0 on the set $S_1(0) = \{v \in \mathbb{R}^n : ||v|| = 1\}$. (Hint: $S_1(0)$ is compact (why?) and $\|\cdot\|_1$ is continuous by (2)).
- (4) Using (3), show that $\|\cdot\|$ and $\|\cdot\|_1$ are equivalent. Deduce that if V be a finite dimensional vector space, all norms on V are equivalent.

Exercise 5. Let $f: \mathbb{R}^2 \to \mathbb{R}^2$ be a continuous, bijective function with (continuous) inverse $f^{-1}: \mathbb{R}^2 \to \mathbb{R}^2$ (that is, we have $f \circ f^{-1}(v) = v$ for all $v \in \mathbb{R}^2$). Suppose that f is differentiable on \mathbb{R}^2 . Does it follow that f^{-1} is differentiable on \mathbb{R}^2 ? (If yes, give a proof, otherwise find a counterexample).

Exercise 6. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be a differentiable function, and fix $v \in \mathbb{R}^2$. We define the *directional derivative* $\frac{\partial f}{\partial v}$ as $\frac{\partial f}{\partial v}(p) = \lim_{t \to 0} \frac{f(p+tv)-f(p)}{t}$.

- (1) Show that the limit exists, so that $\frac{\partial f}{\partial v}$ is indeed well defined.
- (2) Let $J_f(p)$ be the Jacobian of f at p (which is a 1×2 row vector). Show that $\frac{\partial f}{\partial v}(p) = J_f(p) \cdot v$. (3) Let $p_1, p_2 \in \mathbb{R}^2$ be such that $p_2 - p_1 = v$. Let $S = \{(1 - v) \mid p_1 \neq v \}$
- (3) Let $p_1, p_2 \in \mathbb{R}^2$ be such that $p_2 p_1 = v$. Let $S = \{(1 t)p_1 + tp_2 : 0 \le t \le 1\}$ (S is the segment with endpoints p_1, p_2). Show that there is a point $q \in S$ such that $\frac{\partial f}{\partial v}(q) = f(p_2) f(p_1)$. (Hint: show that $(1 t)p_1 + tp_2 = p_1 + tv$, define $g : [0, 1] \to \mathbb{R}$ as $g(t) = f(p_1 + tv)$ and apply the mean value theorem).

Suggested problems (for those who look for a harder challenge!): Rudin, Chapter 9, ex. 7,8,11,13,14.