K. Yaghi

Problem 1

- 1) Write a power series expansion for the function $\frac{1}{2}(e^{r^2} + e^{-r^2})$. (You don't have to derive it).
- 2) Let R be the region bounded below by the plane z = 0, above by the plane z = 2 and between cylinders $0 \le x^2 + y^2 \le \frac{1}{4}$.
- a) Write the volume of R as an iterated triple integral in cylinderical coordinates. Then evaluate the integral.
- b) Set up, but do ot evaluate, the iterated triple integral in rectangular coordinates that gives the volume of R in the order dzdydx.
- c) Set up, but do not evaluate, the iterated triple integral in spherical coordinates that gives the volume of R in the ordes (i) $d\rho d\theta d\theta$ and (ii) $d\theta d\rho d\theta$
- d) Evaluate the following triple integral:

$$\iint_{R} \frac{1}{2} \left(e^{(x^{2} + y^{2})} + e^{-(x^{2} + y^{2})} \right) dV$$

e) Estimate

$$\iint_{R} \frac{1}{2} \frac{\left(e^{(x^{2} + y^{2})} + e^{-(x^{2} + y^{2})}\right)}{10\sqrt{x^{2} + y^{2}}} dV$$

with an error of magnitude no more than 0.001.

Problem 2

Evaluate the triple integral $\iiint 3x dV$, where R is the region that lies above the xy-plane, under $\stackrel{R}{R}$ the plane z = 5 + y, bounded by the cylinder $x^2 + y^2 = 4$ and **inside the first octant**.

Problem 3

Which of the following series converge and which diverge? When possible find the sum of the series. For those which converge, do they converge absolutely or conditionally?

(i)
$$\sum_{n=1}^{\infty} \frac{(-3)^n}{\pi^{n+1}} + \frac{3^n}{n!}$$

(ii)
$$\sum_{n=1}^{\infty} e^{\frac{1}{n}} - 1 - \frac{1}{n}$$

(iii)
$$\sum_{n=1}^{\infty} (\cos[ln(1+\frac{\pi}{2n})^n])^n$$

(iv)
$$\sum_{n=2}^{\infty} (-1)^n \frac{n}{\ln n} (\sqrt[n]{n-1})^n$$

Problem 4

- a) A flat circular plate has the shape of the region x² + y² ≤ 1. The plate, including the boundary where x² + y² = 1, is heated so that the temperature at the point (x,y) is T(x,y) = x² + 2y² x. Find the temperatures at the hottest and coldest points of the plate.
- b) Consider the function $f(x, y) = 12x^2 + 12y^2 + (x + y)^3$
 - (i) Find the critical points of f and classify them as local maxima, local minima or saddle point.
 - (ii) In what direction(s) does f increases most rapidly at the point P(1,1)?
 - (iii) Find the directions of zero change in f at P(1,2).

Problem 5

a) Sketch the region of integration and evaluate the double integral

$$\int_1^{15} \int_0^{1/y} y e^{xy} dx dy$$

b) Evaluate the double integral

$$\int_0^{32} \int_{x^{1/5}}^2 \frac{1}{y^6 + 1} dy dx$$

$$\int_0^\infty e^{-x^2} dx$$

Problem 6

Integrate the function $f(x, y, z) = \frac{1}{\sqrt[3]{x^2 + y^2 + z^2}}$ over the region R bounded below by the sphere $x^2 + y^2 + z^2 = 4$ and above by the cone $z = \sqrt{x^2 + y^2}$.