Problem 1 Let K be the convex set spanned by the points

$$
p_{0}=(0,0,1), \quad p_{1}=(6,0,1), \quad p_{2}=(0,6,1), \quad \text { and } \quad p_{3}=(6,0,2)
$$

in \mathbb{R}^{3}. Also, let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the vector field given by $F(x, y, z)=(x+y, x+y+z, z-1)$.
(i) (4 pts) Show that K has a positively oriented boundary.
(ii) (18 pts) Find

$$
\int_{\partial K} F
$$

(a) directly, and (b) using the divergence theorem.

Problem $2(18 \mathrm{pts})$ Show that the system of equations

$$
\begin{aligned}
y_{1} \sin y_{2}+e^{y_{2}}+7 x_{1}^{2}-x_{2}+x_{2} x_{3} & =38 \\
e^{y_{1}-1}+y_{2}+x_{1} y_{2}+2 x_{2}-x_{3} & =-3
\end{aligned}
$$

can be solved for $\left(y_{1}, y_{2}\right)$ in terms of $\left(x_{1}, x_{2}, x_{3}\right)$ in a neighborhood of the point $(2,-3,-2,1,0)$. Find an explicit approximate solution.

Problem 3

(i) (7 pts) Suppose $K \subset \mathbb{R}^{n}$ is compact and has measure zero. Show that K has content zero.
(ii) (5 pts) Does the result of part (i) remain true if we remove the assumption that K is compact?

Problem 4

(i) (7 pts) Suppose $\Omega \subset \mathbb{R}^{n}$ is open, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is a C^{∞} function, and $n>1$. Show that f is not one to one.
(ii) (5 pts) Suppose that $\Omega \subset \mathbb{R}^{n}$ is open, $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k}$ is a C^{∞} function, and $n>k$. Show that f is not one to one.

Problem 5 (16 pts) Suppose $\Omega \subset \mathbb{R}^{n}$ is open, $f: \Omega \rightarrow \mathbb{R}$ is $C^{1}, p \in \Omega$, and $\nabla f(p) \neq 0$. Prove that there are neighborhoods U and V of 0 and p respectively and a C^{1} diffeomorphism $G: U \rightarrow V$ with $G(0)=p$ and

$$
f \circ G(x)=f(p)+x_{n}
$$

for all $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in U$.

Problem 6 Let

$$
U=\left\{(u, v, r, s) \in \mathbb{R}^{4}: 0<v<u<\frac{\pi}{2} \text { and } 0<s<r\right\} .
$$

For $(u, v, r, s) \in U$, define

$$
G(u, v, r, s)=\left(r \cos u+s \cos v, r \sin u+s \sin v, r^{2}+s^{2}, \arctan \frac{r}{s}\right)
$$

(i) (4 pts) Prove that G is $1-1$.
(ii) $(4 \mathrm{pts})$ Find J_{G}.
(iii) (4 pts) Let $X=G(U)$. Show that X is an open subset of \mathbb{R}^{4} and that $G: U \rightarrow X$ is a C^{1} diffeomorphism.
(v) (8 pts) Suppose $\Delta \subset U$ is compact, the topological boundaries of Δ and $G(\Delta)$ have content zero, $f, F: \mathbb{R}^{4} \rightarrow \mathbb{R}$ are continuous functions, and

$$
\int_{G(\Delta)} F(x, y, z, w) d x d y d z d w=\int_{\Delta} f \circ G(u, v, r, s) d u d v d r d s
$$

Find $F(x, y, z, w)$ in terms of $f(x, y, z, w)$.
Hint. If $(x, y, z, w)=G(u, v, r, s)$, then

$$
x^{2}+y^{2}=r^{2}+s^{2}+2 r s \cos (u-v), \quad r=\sqrt{z} \sin w, \quad \text { and } \quad s=\sqrt{z} \cos w
$$

Also, if $0 \leq \theta \leq \pi / 2$, then

$$
\sin \theta=\sqrt{(1-\cos \theta)(1+\cos \theta)}
$$

