Problem 1 (answer on pages $1 \& 2$ of the booklet)

Which of the following series converge, and which diverge? (5 pts each)
a) $\quad \sum_{n=2}^{\infty} \frac{1}{\sqrt{n}(\ln n)^{100}}$
b) $\sum_{n=2}^{\infty} \frac{\sqrt{2+\frac{1}{n^{2}}}-\sqrt{2}}{\sqrt{2+\frac{1}{n^{2}}}}$
c) $\sum_{n=1}^{\infty}\left(\cos \left[n \ln \left(1+\frac{\pi}{2 n}\right)\right]\right)^{n}$

Problem 2 (answer on pages 3 \& 4 of the booklet)

Consider the function $f(x, y)=x^{2}+2 y^{2}-\frac{y^{3}}{3}$
a) Find all local maxima, local minima and saddle point for $f(x, y)$.(13 pts)
b) In this part, we constrain (x, y) to lie in the disk $x^{2}+y^{2}=1$. At what points of the disk does f attain its absolute maximum and minimum values? (12 pts)
c) Find the equation of the tangent plane and normal line to the surface $z=f(x, y)$ at the point $P(1,1,32 / 3)$. (12 pts)

Problem 3 (answer on pages $5 \& 6$ of the booklet)
Show that the differential form in the following integral is exact, the evaluate the integral. (24 pts)

$$
\int_{(0,1,1)}^{(0,3,2)}\left(e^{x} y z\right) d x+\left(e^{x} z+2 y z\right) d y+\left(e^{x} y+y^{2}+1\right) d z
$$

Problem 4 (answer on pages $7 \& 8$ of the booklet)

Use the transformation

$$
u=x^{2}+y^{2} \text { and } v=x^{2}+y^{2}-2 y
$$

to rewrite

$$
\int_{0}^{1 / 2} \int_{\sqrt{2 y-y^{2}}}^{\sqrt{1-y^{2}}} x e^{y} d x d y
$$

as an integral over an appropriate region G in the $u v$ - plane. Then evaluate the $u v$ integral.(25 pts)

Problem 5 (answer on pages $9 \& 10$ of the booklet)

Let D be the region bounded above by the sphere $x^{2}+y^{2}+z^{2}=4$ and below by the cone $z=\sqrt{3 x^{2}+3 y^{2}}$. Set up, but do not evaluate, the iterated triple integral that gives the volume of D in the order: (8 pts each)
(i) $d z d r d \theta$
(ii) $d r d z d \theta$
(iii) $d \rho d \emptyset d \theta$
(iv) $d \emptyset d \rho d \theta$

Problem 6 (answer on page 11 of the booklet)

Find the volume of the region in the first octant bounded by the coordinate planes, the plane $2 x+3 z=12$ and the surface $y=\frac{1}{2} z^{2}$. (10 pts)

Given a vector field $F=x^{2} \vec{\jmath}$. Let C_{1} be the region of the circle $x^{2}+y^{2}=4$ in the first quadrant and let D be the straight line of equation $y+x=2$. Finally let R be the region enclosed by the C_{1} and D in the first quadrant and oriented counterclockwise.
a) Calculate the work integral $\oint_{C 1} \vec{F} \cdot \vec{T} d s$, by finding a suitable parametrization for C_{1}. (8 pts)
b) Calculate the flux integral $\oint_{R} \vec{F} \cdot \vec{n} d s$, by finding a suitable parametrization for R. (8 pts)
c) Use Green's theorem to recalculate the integrals in parts (a) and (b). (8 pts)

Problem 8 (answer on page 14 of the booklet)

Integrate $f(x, y)=\frac{x}{\sqrt{16 x^{6}+1}}$ over the curve $C: y=x^{4}+1$ from $(0,1)$ to $(1,2)$. (10 pts)

Problem 9 (answer on pages 15 \& 16 of the booklet)

Consider the function $f(x)=e^{x^{2}}$
a) Write a power series expansion for $f(x)$ about the point $\mathrm{x}=0$. Then find the taylor polynomials $\mathrm{p} 1(\mathrm{x})$ and $\mathrm{p} 2(\mathrm{x})$ generated by $f(x)$ about $\mathrm{x}=0$. (5 pts)
b) Use taylor's theorem to estimate $\int_{0}^{1} e^{x^{2}} d x$ with an error of magnitude no more than 10^{-6}. (8 pts)
c) In this part we consider the function $g(x)=2 x e^{x^{2}}$.
(i) Use part (a) to find a power series expansion of $\mathrm{g}(\mathrm{x})$ about $\mathrm{x}=0$. (3 pts)
(ii) Use power series expansion of $\mathrm{g}(\mathrm{x})$ about the point $\mathrm{x}=0$ to prove that $\int g(x) d x=f(x)(7 \mathrm{pts})$

Good Luck!

K. Yaghi

