Math 261 - Exam 2

November 4, 2017
The use of calculators, notes, and books is NOT allowed.

Exercise 1: Since today is November 4... (22 pts)

1. (8 pts) Factor 114 into irreducibles in $\mathbb{Z}[i]$.

Make sure to justify that your factorization is complete.
2. (6 pts) Is 114 a sum of 2 squares ? Of 3 squares ? Of 4 squares ?
3. (8 pts) Given that $p=1142017$ is prime, find the number of elements of $\mathbb{Z}[i]$ of norm p.

Exercise 2: Legendre symbols (17 pts)

1. (5 pts) State the law of quadratic reciprocity.
2. (7 pts) Compute the Legendre symbol $\left(\frac{33}{79}\right)$.

You may use without proof the fact that 79 is prime.
3. (5 pts) Solve the equation $x^{2}=x+8$ in $\mathbb{Z} / 79 \mathbb{Z}$.

Exercise 3: A really big number (24 pts)

1. (6 pts) Prove that every integer $n \in \mathbb{N}$ is congruent to the sum of its digits $\bmod 9$.
2. (15 pts) Let $A=4444^{4444}$, let B be the sum of the digits of A, let C be the sum of the digits of B, and finally let D be the sum of the digits of C. Compute $D \bmod 9$.
3. (3 pts) Deduce that $D=7$.

Exercise 4: A primality test (37 pts)

Let $p \in \mathbb{N}$ be a prime such that $p \equiv 3(\bmod 4)$, and let $P=2 p+1$. The goal of this exercise is to prove that P is prime if and only if $2^{p} \equiv 1 \bmod P$.

1. In this question, we suppose that P is prime, and we prove that $2^{p} \equiv 1 \bmod P$.
(a) $(6 \mathrm{pts})$ Compute the Legendre symbol $\left(\frac{2}{P}\right)$.
(b) (5 pts) Deduce that $2^{p} \equiv 1(\bmod P)$.

Hint: What is $\frac{P-1}{2}$?
2. In this question, we suppose that $2^{p} \equiv 1 \bmod P$, and we prove that P is prime.
(a) (6 pts) Prove that $2 \in(\mathbb{Z} / P \mathbb{Z})^{\times}$. What is its multiplicative order?
(b) (6 pts) Deduce that $p \mid \phi(P)$.
(c) (9 pts) Prove that p and P are coprime, and deduce that there exists a prime divisor q of P such that $q \equiv 1(\bmod p)$.
Hint: $\phi\left(\prod p_{i}^{a_{i}}\right)=\prod\left(p_{i}-1\right) p_{i}^{a_{i}-1}$.
(d) (5 pts) Deduce that P is prime.

Hint: How large can P / q be?

