Math 261 — Exam 2

November 4, 2017

The use of calculators, notes, and books is **NOT** allowed.

Exercise 1: Since today is November 4... (22 pts)

- (8 pts) Factor 114 into irreducibles in Z[i].
 Make sure to justify that your factorization is complete.
- 2. (6 pts) Is 114 a sum of 2 squares ? Of 3 squares ? Of 4 squares ?
- 3. (8 pts) Given that p = 1142017 is prime, find the number of elements of $\mathbb{Z}[i]$ of norm p.

Exercise 2: Legendre symbols (17 pts)

- 1. (5 pts) State the law of quadratic reciprocity.
- 2. (7 pts) Compute the Legendre symbol $\left(\frac{33}{79}\right)$.

You may use without proof the fact that 79 is prime.

3. (5 pts) Solve the equation $x^2 = x + 8$ in $\mathbb{Z}/79\mathbb{Z}$.

Exercise 3: A really big number (24 pts)

- 1. (6 pts) Prove that every integer $n \in \mathbb{N}$ is congruent to the sum of its digits mod 9.
- 2. (15 pts) Let $A = 4444^{444}$, let B be the sum of the digits of A, let C be the sum of the digits of B, and finally let D be the sum of the digits of C. Compute D mod 9.
- 3. (3 pts) Deduce that D = 7.

Exercise 4: A primality test (37 pts)

Let $p \in \mathbb{N}$ be a prime such that $p \equiv 3 \pmod{4}$, and let P = 2p + 1. The goal of this exercise is to prove that P is prime if and only if $2^p \equiv 1 \mod P$.

- 1. In this question, we suppose that P is prime, and we prove that $2^p \equiv 1 \mod P$.
 - (a) (6 pts) Compute the Legendre symbol $\left(\frac{2}{P}\right)$.
 - (b) (5 pts) Deduce that $2^p \equiv 1 \pmod{P}$. Hint: What is $\frac{P-1}{2}$?
- 2. In this question, we suppose that $2^p \equiv 1 \mod P$, and we prove that P is prime.
 - (a) (6 pts) Prove that $2 \in (\mathbb{Z}/P\mathbb{Z})^{\times}$. What is its multiplicative order?
 - (b) (6 pts) Deduce that $p \mid \phi(P)$.
 - (c) (9 pts) Prove that p and P are coprime, and deduce that there exists a prime divisor q of P such that $q \equiv 1 \pmod{p}$. *Hint:* $\phi(\prod p_i^{a_i}) = \prod (p_i - 1) p_i^{a_i - 1}$.
 - (d) (5 pts) Deduce that P is prime.*Hint: How large can P/q be?*

END