# Math 261 - Final exam 

December 11, 2018
The use of notes and books is NOT allowed.

## Exercise 1: A strange formula (24 pts)

Let $a$ and $b$ be positive integers.

1. (4 pts) Prove that $\operatorname{gcd}(k a, k b)=k \operatorname{gcd}(a, b)$ and that $\operatorname{lcm}(k a, k b)=k \operatorname{lcm}(a, b)$ for all $k \in \mathbb{N}$.

Suggestion: Bézout (but there are plenty of other ways).
2. $(3 \mathrm{pts})$ Prove that $\frac{a}{\operatorname{gcd}(a, b)}$ and $\frac{b}{\operatorname{gcd}(a, b)}$ are coprime.
3. $(6 \mathrm{pts})$ Prove that if $\operatorname{gcd}(a, b)=1$, then $\operatorname{gcd}(a+b, a b)=1$.

Hint: Prime divisor.
4. (6 pts) Prove that $\operatorname{gcd}(a+b, \operatorname{lcm}(a, b))=\operatorname{gcd}(a, b)$.

Hint: Use the previous questions.
5. (5 pts) Application: Suppose that $a+b=144$ and that $\operatorname{lcm}(a, b)=420$. Compute $a b$.

## Exercise 2: A Pell-Fermat equation (16 pts)

1. $(8 \mathrm{pts})$ Compute the continued fraction of $\sqrt{40}$.

This means you should somehow find a formula for all the coefficients of the continued fraction expansion, not just finitely many of them.
2. ( 5 pts ) Use the previous question to find the fundamental solution to the equation $x^{2}-40 y^{2}=1$.
3. ( 3 pts ) Find another non-trivial (i.e. not $x= \pm 1, y=0$ ) solution to the equation $x^{2}-40 y^{2}=1$ (simply changing the sign of $x$ or $y$ in the previous solution is not good enough).

## Please turn over

## Exercise 3: Multiples of sums of squares (27 pts)

The purpose of the exercise is to determine some conditions for the multiple of a sum of $k$ squares to be a sum of $k$ squares. We will consider the case $k=2$ in most of the exercise, and $k=3$ in the last question.

1. ( 1 pt ) Briefly recall why $n$ is a sum of two squares if and only if there exists $\alpha \in \mathbb{Z}[i]$ such that $N(\alpha)=n$.
2. (4 pts) Let $n \in \mathbb{N}$. Prove that if $n$ is a sum of two squares, then so is $2 n$.

Hint: Multiply by $1+i$.
3. (4 pts) More precisely, suppose that we know $a, b \in \mathbb{Z}$ such that $n=a^{2}+b^{2}$. Find $c, d \in \mathbb{Z}$ (expressed in terms of $a$ and $b$ ) such that $2 n=c^{2}+d^{2}$.
4. We now suppose that $n$ is a sum of two squares. Let $k \in \mathbb{N}$. The purpose of the next two questions is to prove that $k n$ is a sum of two squares if and only if $k$ is a sum of two squares.
(a) (4 pts) Prove that if $k$ is a sum of two squares, then so is $k n$.
(b) ( 7 pts ) Prove that if $k$ is not a sum of two squares, then neither is $k n$. Hint: What is the condition on the prime factorization of $k$ for $k$ to be $a$ sum of two squares?
5. ( 7 pts ) To conclude, we try again with three squares. Is it true that if $m, n \in \mathbb{N}$ are sums of three squares, then so is $m n$ ? (Either prove it or give a counterexample).

## Exercise 4: Sophie Germain and the automatic primitive root (33 pts)

In this exercise, we fix an odd prime $p \in \mathbb{N}$ such that $q=\frac{p-1}{2}$ is also prime and $q \geqslant 5$.

1. $(4 \mathrm{pts})$ Prove that $p \equiv-1(\bmod 3)$.

Hint: Express $p$ in terms of $q$. What happens if $p \equiv+1(\bmod 3)$ ?
2. ( 7 pts ) Express the number of primitive roots in $(\mathbb{Z} / p \mathbb{Z})^{\times}$in terms of $q$. Hint: What are the prime divisors of $p-1$ ?
3. (10 pts) Let $x \in(\mathbb{Z} / p \mathbb{Z})^{\times}$. Prove that $x$ is a primitive root if and only if $x \neq \pm 1$ and $\left(\frac{x}{p}\right)=-1$.
Hint: What are the prime divisors of $p-1$ ? (bis)
4. ( 7 pts ) Deduce that $x=-3 \in(\mathbb{Z} / p \mathbb{Z})^{\times}$is a primitive root.
5. ( 5 pts ) (More difficult) Prove that $x=6 \in(\mathbb{Z} / p \mathbb{Z})^{\times}$is a primitive root if and only if $q$ is a sum of two squares.

