Math 261 — Final exam

December 11, 2018

The use of notes and books is **NOT** allowed.

Exercise 1: A strange formula (24 pts)

Let a and b be positive integers.

1. (4 pts) Prove that gcd(ka, kb) = k gcd(a, b) and that lcm(ka, kb) = k lcm(a, b) for all $k \in \mathbb{N}$.

Suggestion: Bézout (but there are plenty of other ways).

- 2. (3 pts) Prove that $\frac{a}{\gcd(a,b)}$ and $\frac{b}{\gcd(a,b)}$ are coprime.
- 3. (6 pts) Prove that if gcd(a, b) = 1, then gcd(a + b, ab) = 1. *Hint: Prime divisor.*
- 4. (6 pts) Prove that gcd (a + b, lcm(a, b)) = gcd(a, b). *Hint: Use the previous questions.*
- 5. (5 pts) Application: Suppose that a + b = 144 and that lcm(a, b) = 420. Compute ab.

Exercise 2: A Pell-Fermat equation (16 pts)

1. (8 pts) Compute the continued fraction of $\sqrt{40}$.

This means you should somehow find a formula for **all** the coefficients of the continued fraction expansion, not just finitely many of them.

- 2. (5 pts) Use the previous question to find the fundamental solution to the equation $x^2 40y^2 = 1$.
- 3. (3 pts) Find another non-trivial (i.e. not $x = \pm 1, y = 0$) solution to the equation $x^2 40y^2 = 1$ (simply changing the sign of x or y in the previous solution is not good enough).

Please turn over

Exercise 3: Multiples of sums of squares (27 pts)

The purpose of the exercise is to determine some conditions for the multiple of a sum of k squares to be a sum of k squares. We will consider the case k = 2 in most of the exercise, and k = 3 in the last question.

- 1. (1 pt) Briefly recall why n is a sum of two squares if and only if there exists $\alpha \in \mathbb{Z}[i]$ such that $N(\alpha) = n$.
- 2. (4 pts) Let $n \in \mathbb{N}$. Prove that if n is a sum of two squares, then so is 2n. Hint: Multiply by 1 + i.
- 3. (4 pts) More precisely, suppose that we know $a, b \in \mathbb{Z}$ such that $n = a^2 + b^2$. Find $c, d \in \mathbb{Z}$ (expressed in terms of a and b) such that $2n = c^2 + d^2$.
- 4. We now suppose that n is a sum of two squares. Let $k \in \mathbb{N}$. The purpose of the next two questions is to prove that kn is a sum of two squares if and only if k is a sum of two squares.
 - (a) (4 pts) Prove that if k is a sum of two squares, then so is kn.
 - (b) (7 pts) Prove that if k is not a sum of two squares, then neither is kn.*Hint: What is the condition on the prime factorization of k for k to be a sum of two squares?*
- 5. (7 pts) To conclude, we try again with **three** squares. Is it true that if $m, n \in \mathbb{N}$ are sums of **three** squares, then so is mn? (Either prove it or give a counter-example).

Exercise 4: Sophie Germain and the automatic primitive root (33 pts)

In this exercise, we fix an odd prime $p \in \mathbb{N}$ such that $q = \frac{p-1}{2}$ is also prime and $q \ge 5$.

- 1. (4 pts) Prove that $p \equiv -1 \pmod{3}$. Hint: Express p in terms of q. What happens if $p \equiv +1 \pmod{3}$?
- 2. (7 pts) Express the number of primitive roots in (Z/pZ)[×] in terms of q. *Hint: What are the prime divisors of p* − 1?
- 3. (10 pts) Let x ∈ (Z/pZ)[×]. Prove that x is a primitive root if and only if x ≠ ±1 and (^x/_p) = −1. *Hint: What are the prime divisors of p* − 1? (*bis*)
- 4. (7 pts) Deduce that $x = -3 \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ is a primitive root.
- 5. (5 pts) (More difficult) Prove that $x = 6 \in (\mathbb{Z}/p\mathbb{Z})^{\times}$ is a primitive root if and only if q is a sum of two squares.

END