## Math 261 - Exam 2

November 7, 2018
The use of notes and books is NOT allowed.

## Exercise 1: Polynomials mod 691 ( 30 pts)

In this exercise, you may freely use the fact that 691 is prime.
Consider the polynomials $f(x)=x^{4}+4 x^{3}+4 x^{2}-5 x-12$ and $g(x)=x^{2}+3 x+4$ in $(\mathbb{Z} / 691 \mathbb{Z})[x]$.

1. (5 pts) Check that $g(x) \mid f(x)$, and find a polynomial $h(x)$ such that $f(x)=g(x) h(x)$.
2. ( 5 pts ) State the law of quadratic reciprocity.
3. (16 pts) Use Legendre symbols to prove that neither $g(x)$ nor $h(x)$ have any roots in $\mathbb{Z} / 691 \mathbb{Z}$.
4. (4 pts) What is the complete factorization of $f(x)$ in $(\mathbb{Z} / 691 \mathbb{Z})[x]$ ?

Make sure to justify that your factors are irreducible.

## Exercise 2: The Pépin test ( 30 pts)

In the 17 th century, the French mathematician Pierre de Fermat studied the numbers

$$
F_{n}=2^{2^{n}}+1,
$$

where $n \in \mathbb{N}$. The purpose of this exercise is to establish a criterion to test whether $F_{n}$ is prime. In the rest of the exercise, we fix $n \in \mathbb{N}$.

1. (4 pts) Prove that $F_{n} \equiv-1(\bmod 3)$ and that $F_{n} \equiv 1(\bmod 4)$.
2. $(4 \mathrm{pts})$ Let $p \in \mathbb{N}$ be a prime such that $p \equiv 1(\bmod 4)$. Prove that $\left(\frac{3}{p}\right)=\left(\frac{p}{3}\right)$.
3. ( 7 pts ) Use the previous questions to prove that if $F_{n}$ is prime, then

$$
3^{\left(F_{n}-1\right) / 2} \equiv-1 \quad\left(\bmod F_{n}\right)
$$

4. (15 pts) Conversely, prove that if $3^{\left(F_{n}-1\right) / 2} \equiv-1\left(\bmod F_{n}\right)$, then $F_{n}$ is prime. Hint: Square both sides. What is $F_{n}-1$, and what does this tell you about the multiplicative order of $3 \bmod F_{n}$ ?

## Exercise 3: The Solovay-Strassen test (40 pts)

In this exercise, we fix an odd integer $N \geqslant 3$, not necessarily prime. Let

$$
N=\prod_{i=1}^{r} p_{i}^{v_{i}}
$$

be its factorization, where the $p_{i}$ are distinct primes. We define the Jacobi symbol by the formula

$$
\left[\frac{x}{N}\right]=\prod_{i=1}^{r}\left(\frac{x}{p_{i}}\right)^{v_{i}} \in \mathbb{Z}
$$

for all $x \in \mathbb{Z}$, where $\left(\frac{x}{p_{i}}\right)$ is the usual Legendre symbol defined in class. In particular, if $N$ is prime, then $\left[\frac{x}{N}\right]=\left(\frac{x}{N}\right)$.

1. In this question, we investigate some basic properties of the symbol $\left[\frac{x}{N}\right]$.

The sub-questions of this question are independent from each other.
(a) (3pts) Prove that if $x \equiv y(\bmod N)$, then $\left[\frac{x}{N}\right]=\left[\frac{y}{N}\right]$.
(b) ( 6 pts ) Prove that $\left[\frac{x}{N}\right] \neq 0 \Longleftrightarrow x$ is invertible $\bmod N$.
(c) $(3 \mathrm{pts})$ Prove that $\left[\frac{x y}{N}\right]=\left[\frac{x}{N}\right]\left[\frac{y}{N}\right]$.

We now introduce the function

$$
\begin{aligned}
S:(\mathbb{Z} / N \mathbb{Z})^{\times} & \longrightarrow(\mathbb{Z} / N \mathbb{Z})^{\times} \\
x & \longmapsto\left[\frac{x}{N}\right] x^{\frac{N-1}{2}}
\end{aligned}
$$

2. (10 pts) Prove that if $N$ is prime, then $S(x)=1$ for all $x \in(\mathbb{Z} / N \mathbb{Z})^{\times}$.
3. The goal of this question is to prove that conversely, if $N$ is not prime, then $S(x)$ is not always 1 .

In order to make things easier, we will suppose that $N$ is composite and squarefree, that is to say that $N=p_{1} p_{2} \cdots p_{r}$ with the $p_{i}$ distinct primes and $r \geqslant 2$. We define $M=N / p_{1}=p_{2} \cdots p_{r}$.
(a) (10 pts) Prove that there exists a $t \in \mathbb{Z}$ such that $\left(\frac{t}{p_{1}}\right)=-1$ and that $t \equiv 1(\bmod M)$.
Hint: CRT.
(b) (8 pts) Prove that if $t$ is as in the previous question, then $S(t) \neq 1$. Hint: Compute $S(t) \bmod M$.

END

