Feb. 4, 1997

Prof. N. Nahlus

- 1. If m is square free and $kj \equiv 1 \mod \phi(m)$, show that $a^{kj} \equiv a \mod m$ for all integers a, and why this is important for *coding theory*?
- 2. Find all primitive solutions in positive integers of the equation $x^2 + 7y^2 = z^2$ if y is even.
- 3. If p is an odd prime and (abc, p) = 1, show that the number of solutions (x, y) modulo p of the equation $ax^2 + by^2 \equiv c \mod p$ is $p (\frac{-ab}{p})$.

Hint:
$$\sum_{y=1}^{p} \left(\frac{y^2 + k}{p} \right) = -1$$
 if $(k, p) = 1$.

- 4. Find the number of integers n, $1 \le n \le p$ such that $(\frac{n}{p}) = (\frac{n+2}{p}) = -1$
- 5. If p is a prime, $p \equiv 1 \mod 4$, and $p = a^2 + b^2$ with a odd and positive, show that $(\frac{a}{p}) = 1$. (Hint: Use the reciprocity law of the Jacobi symbol)
- 6. Use the Chinese Remainder theorem to show that $x^2 \equiv a \mod p_1 p_2 p_k$ is solvable if $x^2 \equiv a \mod p_i$ is solvable for each i. $(p_1, p_2, ..., p_k \text{ are distinct primes})$
- 7. Compute $(\frac{5}{13})$ by Gauss Lemmas 1 and 2.
- 8. Find all integer solutions of 10x + 14y + 35z = 1.

- 9. Show that there are infinitely many primes of the form 8k+1. Hint: Every prime divisor of $x^4 + 1$ is of the form 8k+1. (prove it!)
- 10. Let p and q be odd primes such that q = 2p+1 and $p \equiv 1 \mod 4$. Show that 2 is a primitive root modulo q.

<u>Hint</u>: Find $(\frac{2}{q})$ from p=4k+1. Then apply Euler's Criterion.

11. Let p be an odd prime and (a, p) = 1. Show that $x^n \equiv a \mod p^m$ is solvable if $a^{\frac{\phi(p^m)}{d}} \equiv 1 \mod p^m$ where $d = g. c. d(n, \phi(p^m))$

<u>Hint</u>: Let g be a primitive root modulo p^m , $x=g^t$ and $a=g^b$. Then solve for t.

12. Show that the number e is irrational.

<u>Hint</u>: $e = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!} + \dots$ If $e = \frac{i}{k}$, multiply both sides (of the above equation) by k! . Then discover the rest of the proof.

13. Prove the reciprocity law of the Legendre symbol using *Gauss sums* knowing the fact concerning G².