Part $1(80 \%)$ Answer any 8 problems out of 10 problems

1. Show that $Z[\sqrt{-2}]$ is a Euclidean domain
2. Show that $Z[\sqrt{-5}]$ is not a UFD. (Hint: $(1+\sqrt{-5})(1-\sqrt{-5})=6)$
3. Use the Mobius Inversion Formula to solve for $f(\boldsymbol{n})$ in each of the following cases.
(i) $n^{3}=\sum_{d \mid n} f(d)$
(ii) $\mu(n) n^{3}=\sum_{d \mid n} d^{3} f(d) \quad$ (Hint: Make a substitution)
4. If p is a prime, a is positive, $\mathrm{a} \equiv 1 \bmod 8$, and $p=a^{5}+20 a b-2 b^{2}$.

Show that $\left(\frac{a}{p}\right)=1$. (Hint: Use the reciprocity law of the Jacobi symbol)
5. Find all primitive solutions in positive integers of the equation

$$
x^{2}+11 y^{2}=z^{2} \text { if } \mathrm{y} \text { is even }(\mathrm{x} \& \mathrm{z} \text { are odd }) . \quad\left(\underline{\text { Hint: }}: 11 y^{2}=\ldots .\right)
$$

6. State \& prove the theorem about the solvability of $x^{n} \equiv a \bmod p \quad($ where p is an odd prime)
7. Find $\left|x^{4} \equiv-6 \bmod 75\right|$ (the number of solutions $\bmod 75$).s
8. Suppose $f(a) \equiv 0 \bmod p^{25}$ (where p is an odd prime). If $p^{5} \| f^{\prime}(a)$, show that a can be lifted to a solution of $f(x) \equiv 0 \bmod p^{40}$
(Hint: $f\left(a+t p^{20}\right)$
9. Let p be an odd prime
(i) $p \mid x^{4}+1 \Rightarrow p \equiv 1 \bmod 8$
(ii) Deduce that there are infinitely many primes $p \equiv 1 \bmod 8$
10. Let p be a prime such that $p \equiv 1 \bmod 4$. Show that $p=a^{2}+b^{2}$ for some integers a, b. (Hint: Consider $\left.x^{2} \equiv-1 \bmod p \& Z[i]\right)$

Part 2: Obligatory (20\%)

A) If m is square free $\& k \equiv 1 \bmod \phi(m)$, show that $a^{k} \equiv a \bmod m$ for all a.
(Hint: Write m as a product of distinct primes)
B) Show that $\frac{x^{2}-2}{2 y^{2}+3}$ is never an integer for all integers $\mathrm{x} \& \mathrm{y}$
C) If $q=4^{n}+1\left(\mathrm{n}\right.$ is a positive integer) and $3^{(q-1) / 2} \equiv-1(\bmod q)$, show that q is a prime.

