Remarks: This exam booklet is also your answer sheet; please answer question 0 on this page, and answer questions $\mathbf{1 - 1 0}$ inside the booklet. (The questions are repeated on pages $1-$ 10.) You may continue your solutions on the backs of pages and on the extra blank sheets at the end.

This is a long exam; do as much of it as you can, and budget your time wisely. Each of questions $1-10$ counts for 10 points. Make sure to communicate your ideas by explaining all of your steps clearly. Calculators are allowed.

Good luck!

Question 0. a) Your name:
b) Your AUB ID\#:

Question 1. a) Find the prime factorization of $N=93933$.
b) How many (positive) divisors does N have?
c) Show that N is not a sum of two squares.

Question 2. a) Use the Euclidean algorithm to find the multiplicative inverse of 7 modulo 33.
b) Find all solutions $(x, y) \in \mathbf{Z} / 33 \mathbf{Z} \times \mathbf{Z} / 33 \mathbf{Z}$ satisfying

$$
\left\{\begin{array}{l}
7 x+5 y \equiv 0 \quad(\bmod 33) \\
11 x+7 y \equiv 3
\end{array} \quad(\bmod 33) .\right.
$$

Hint: use the first equation to eliminate x from the second equation.

Question 3. Factorize the Gaussian integer $420+240 i$ into a product of powers of Gaussian primes (times a unit, if necessary).

Question 4. How many solutions (modulo 2201) are there to the equation $x^{14} \equiv 1 \quad(\bmod 2201)$? Hint: $2201=31 \times 71$, where 31 and 71 are prime. Use the Chinese remainder theorem.

Question 5. a) Show that the quadratic form $x^{2}+x y+3 y^{2}$ represents only positive integers.
b) Show that the quadratic form $x^{2}-61 y^{2}$ does not represent 23 , by working modulo 61 .

Question 6. In this problem, $x, y \geq 1$. Feel free to find one or both of the solutions to each part by inspection.
a) Find two different solutions to the equation $x^{2}-5 y^{2}=-1$.
b) Find two different solutions to the equation $x^{2}-5 y^{2}=-4$.

Question 7. a) By trial and error, write each of 23 and 29 as a sum of four squares $a^{2}+b^{2}+c^{2}+d^{2}$, where $a, b, c, d \in\{0,1,2,3, \ldots\}$.
b) Use your answer to part a) to write $667=23 \times 29$ as a sum of four squares.

Question 8. a) Calculate the number α defined by the eventually periodic continued fraction

$$
\alpha=2+\frac{1}{6+} \frac{1}{1+} \frac{1}{6+} \frac{1}{1+} \frac{1}{6+} \frac{1}{1+} \cdots .
$$

b) Write down the first few convergents A_{n} / B_{n} for α, until you reach a convergent for which you can prove that

$$
\left|\frac{A_{n}}{B_{n}}-\alpha\right| \leq \frac{1}{1000} .
$$

Question 9. a) Let p be any prime with $p \geq 5$. Show that the equation

$$
\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-6\right) \equiv 0 \quad(\bmod p)
$$

has at least one solution.
b) Show that if furthermore $p \equiv 1(\bmod 24)$, then the above equation has six solutions modulo p.

Question 10. This exercise will lead you through another proof of the fact that if $p \equiv 1(\bmod 4)$, then p is a sum of two squares.
a) Let p be any prime number, and fix any $x \not \equiv 0(\bmod p)$. Using the pigeonhole principle, show that there exist two different pairs of integers (m, n) and (m^{\prime}, n^{\prime}) satisfying

$$
0 \leq m, n, m^{\prime}, n^{\prime}<\sqrt{p}, \quad \text { and } m x+n \equiv m^{\prime} x+n^{\prime} \quad(\bmod p) .
$$

Cultural note: Writing $a=m-m^{\prime}$ and $b=n^{\prime}-n$, the result of part a) implies that there exist integers a, b with $0<|a|,|b|<\sqrt{p}$ and $a x \equiv b \quad(\bmod p)$. This is called Thue's lemma and you can use it in part b) below.
b) In the case where $p \equiv 1(\bmod 4)$, we further choose x such that $x^{2} \equiv-1(\bmod p)$. Conclude that the a and b of Thue's lemma satisfy

$$
a^{2}+b^{2}=p
$$

Hint: show first that $a^{2}+b^{2} \equiv 0(\bmod p)$. Then look at the size of $a^{2}+b^{2}$.

