Remarks: This is a long exam; do as much of it as you can, and please take care to budget your time wisely. Each problem is worth ten points; you may do the problems in any order (kindly indicate in your blue book which problem you are solving at any given time).

Please make sure to communicate your ideas by explaining your reasoning precisely and clearly.
GOOD LUCK!

Problem 1. State and prove a test for a number n to be divisible by 9 .
Problem 2. Factorize the Gaussian integer $189+42 i$ into a product of Gaussian primes.
Problem 3. Find all integers x that simultaneously satisfy the equations

$$
\begin{cases}5 x \equiv 2 & (\bmod 8), \\ 6 x \equiv 9 & (\bmod 15) .\end{cases}
$$

Note: your answer should be in the form: $x \equiv a(\bmod m)$ for suitable a and m. It is also acceptable to give an answer that looks like: $x \equiv$ one of $a, b, c(\bmod m)$.

Problem 4. Which of the following congruences have solutions? (This is really an exercise in the Legendre symbol. Note that 73, 89, and 1019 are all prime numbers.)
(a) $x^{2} \equiv-11 \quad(\bmod 73)$
(b) $x^{2} \equiv 56 \quad(\bmod 89)$
(c) $x^{2} \equiv 15 \quad(\bmod 1019)$.

Problem 5. Use Gauss' Lemma to compute $\left(\frac{-3}{23}\right)$.
Problem 6. In an application of the RSA cryptosystem, Alice encodes a message M by calculating $M_{1} \equiv M^{11} \quad(\bmod 6161)$ and sending to Bob the encoded message M_{1}. Bob decodes the message by calculating $M \equiv M_{1}^{d} \quad(\bmod 6161)$ for a suitable d. What value of d does he use?
(Remark: it is easy to factor $6161=61 \times 101$, so this is not a secure choice of public key.)
Problem 7. Find the continued fraction of $\sqrt{5}$ and write down the first few convergents until you reach a convergent A_{n} / B_{n} for which you can prove that

$$
\left|\frac{A_{n}}{B_{n}}-\sqrt{5}\right|<\frac{1}{500} .
$$

Problem 8. Given that 2 is a primitive root mod 19, find all the solutions to the following equations:
(a) $x^{3} \equiv 1 \quad(\bmod 19)$
(b) $x^{5} \equiv 4 \quad(\bmod 19)$
(c) $x^{8} \equiv-1 \quad(\bmod 19)$.

Problem 9. Give an example of a number a such that the Jacobi symbol $\left(\frac{a}{35}\right)$ is equal to 1 , but the equation $x^{2} \equiv a \quad(\bmod 35)$ has no solutions.

Problem 10. Let $d>0$ such that d is not a square. Show that if the equation

$$
x^{2}-d y^{2}=3, \quad x, y \in \mathbf{Z}
$$

has a solution, then it has infinitely many solutions.
(Hint: Think of norms of elements in $\mathbf{Z}[\sqrt{d}]$ and use the fact that the equation $x^{2}-d y^{2}=1$ has infinitely many solutions.)

Problem 11. Let p be a prime such that $\ell=4 p+1$ is also prime.
a) Show that $2^{2 p} \equiv-1(\bmod \ell)$.
b) Show that 2 is a primitive root $\bmod \ell$.

