Math 261 - Fall 2001-2002

Solutions to Midterm Quiz

1. Find the prime factorizations of 8536 and 7007 , and use these to calculate $\varphi(7007)$ and the GCD $(8536,7007)$.
Answer. $8536=2^{3} \cdot 11 \cdot 97$, where 97 is prime since it is not divisible by any prime less than $\sqrt{97} \approx 10$. Also $7007=7^{2} \cdot 11 \cdot 13$. We use this to conclude that $\varphi(7007)=$ $\left(7^{2}-7\right)(11-1)(13-1)=5040$, and that $(8536,7007)=11$.
2. Calculate $\left(\frac{3}{11}\right)$ in two ways, first by Euler's criterion, and second by Gauss' Lemma (not by quadratic reciprocity).

Answer. Note that $(11-1) / 2=5$. Then Euler's criterion gives $\left(\frac{3}{11}\right) \equiv 3^{5} \equiv 243 \equiv+1$ $(\bmod 11)$. For Gauss' Lemma, we look at $3 \cdot 1 \equiv 3,3 \cdot 2 \equiv-5,3 \cdot 3 \equiv-2,3 \cdot 4 \equiv 1$, and $3 \cdot 5 \equiv 4 \quad(\bmod 11)$. Here we reduce to a residue $\bmod 11$ that is between ± 5. There are two minus signs (-5 and -2), so the quadratic residue is $(-1)^{2}=+1$.
3. Find one solution to the equation $x^{2} \equiv 5\left(\bmod 11^{2}\right)$. (You do not need to find the most general solution.)
Answer. If $x^{2} \equiv 5\left(\bmod 11^{2}\right)$, then certainly $x^{2} \equiv 5 \quad(\bmod 11)$. So we can start with $x_{0}=4$ (found by trial and error), which certainly satisfies $x_{0}^{2} \equiv 5(\bmod 11)$. We then $\operatorname{try} x=x_{0}+11 k=4+11 k$, where we only care about $k \bmod 11$. Now $(4+11 k)^{2}=$ $16+88 k+11^{2} k^{2} \equiv 16+88 k \quad\left(\bmod 11^{2}\right)$, so we must solve the equation $16+88 k \equiv 5$ $\left(\bmod 11^{2}\right)$. Equivalently,

$$
88 k \equiv-11 \quad\left(\bmod 11^{2}\right) \Longleftrightarrow 8 k \equiv-1 \quad(\bmod 11) \Longleftrightarrow k \equiv-7 \equiv 4 \quad(\bmod 11)
$$

(Note that the last step follows by noting that 7 is the inverse of $8 \bmod 11$. This can be found by trial and error or by the Euclidean algorithm.) Anyhow we obtain $x=$ $4+11 \cdot 4=48$ as a solution. (Alternatively, if we start from $x_{1}=7$, we obtain another root $73\left(\bmod 11^{2}\right)$. Note that $73 \equiv-48\left(\bmod 11^{2}\right)$.)
4. Show that every number a has a unique cube root x modulo 101 .
(For example, the number 14 has the cube root 6 , since $6^{3}=216 \equiv 14(\bmod 101)$. I am asking you to show both existence and uniqueness of the cube root for any a, not just for 14.)

Answer. Note that 101 is a prime number. In case $a \equiv 0(\bmod 101)$, then the only solution is $x \equiv 0$. Otherwise, if $a \not \equiv 0(\bmod 101)$, then let g be a primitive root mod 101 , and write $a \equiv g^{b} \quad(\bmod 101)$ for some b which is only determined modulo 100 . We are looking for an $x \not \equiv 0 \quad(\bmod 101)$, so we can write $x \equiv g^{y}(\bmod 101)$, where y is our "unknown" that is determined modulo 100. Then

$$
x^{3} \equiv a \quad(\bmod 101) \Longleftrightarrow g^{3 y} \equiv g^{b} \quad(\bmod 101) \Longleftrightarrow 3 y \equiv b \quad(\bmod 100)
$$

This last equation has a unique solution for $y \bmod 100$, since 3 is invertible modulo 100 [why?]. Once we know y, we then obtain a unique x.
5. Using the Chinese Remainder Theorem, find one solution x to the equation $x^{2} \equiv 1$ ($\bmod 91$) with $x \not \equiv \pm 1 \quad(\bmod 91)$. (Again, you do not need to find the most general x of this form. It may help you to notice that $91=7 \cdot 13$.)

Answer. We want $x^{2} \equiv 1$ modulo each of the primes 7 and 13 , so by an argument from class we see that $x \equiv \pm 1$ modulo each of 7 or 13 . To ensure that $x \not \equiv \pm 1(\bmod 91)$, we take a different choice modulo each prime:

$$
\begin{equation*}
x \equiv+1 \quad(\bmod 7), \quad x \equiv-1 \quad(\bmod 13) \tag{*}
\end{equation*}
$$

This can be solved by the Chinese Remainder Theorem. Explicitly, we see that $x=13 k-1$ but $x \equiv 1 \quad(\bmod 7)$, so we obtain $13 k-1 \equiv 1 \quad(\bmod 7)$, which we solve to obtain $k \equiv-2 \equiv 5 \quad(\bmod 7)$. This yields $x \equiv 13 \cdot 5-1 \equiv 64 \quad(\bmod 91)$. (One can alternatively solve the opposite system from $(*)$, and obtain the other solution $x \equiv 27(\bmod 91)$.)
6. Let p be a prime dividing $10^{32}+1$. Show that $p \equiv 1(\bmod 64)$. Hint: what is the order of 10 modulo p ?
Answer. We know that $10^{32}+1 \equiv 0(\bmod p)$, so we obtain $10^{32} \equiv-1 \quad(\bmod p)$, and also $10^{64} \equiv\left(10^{32}\right)^{2} \equiv+1 \quad(\bmod p)$. So the order of 10 modulo p is a factor of 64 but not a factor of 32 , so the order of 10 is exactly 64 . But we know by the little Fermat theorem that $10^{p-1} \equiv 1 \quad(\bmod p)$, so the order of 10 is a factor of $p-1$. This implies $64 \mid p-1$, so $p \equiv 1 \quad(\bmod 64)$.

Note: $10^{32}+1=19841 \cdot 976193 \cdot 6187457 \cdot 834427406578561$. Also note that we used implicitly the fact that $-1 \not \equiv 1 \quad(\bmod p)$. This is okay, since $10^{32}+1$ is odd, so $p \neq 2$.
7. In this question, p is a prime with $p \neq 2,3$. Even if you cannot prove every part of this problem, you may assume the result of a previous part in all subsequent parts.
a) Show that $p \equiv \pm 1 \quad(\bmod 6)$.
b) Show that $\left(\frac{-3}{p}\right)=\left(\frac{p}{3}\right)$.
c) Conclude that -3 is a quadratic residue modulo p if and only if $p \equiv 1(\bmod 6)$.
d) Show that there exist infinitely many primes of the form $6 k+1$.

Answer. a) p is odd, so $p \equiv 1,3$, or $5(\bmod 6)$. But p is not divisible by 3 , so the only choices are $p \equiv 1$ or $5(\bmod 6)$.
b) Case I: $p \equiv 1 \quad(\bmod 4)$, in which case $\left(\frac{-3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)=(+1)\left(\frac{p}{3}\right)$.

Case II: $p \equiv 3 \quad(\bmod 4)$, in which case $\left(\frac{-3}{p}\right)=\left(\frac{-1}{p}\right)\left(\frac{3}{p}\right)=(-1)\left(-\left(\frac{p}{3}\right)\right)=+\left(\frac{p}{3}\right)$.
c) -3 is a quadratic residue $\Longleftrightarrow\left(\frac{-3}{p}\right)=1 \quad \Longleftrightarrow \quad\left(\frac{p}{3}\right)=1 \quad \Longleftrightarrow p \equiv 1$ $(\bmod 3) \Longleftrightarrow p \equiv 1 \quad(\bmod 6)$. The last equivalence is because the only choices of p modulo 6 are ± 1, and this determines the residue of p modulo 3 .
d) Assume $p_{1}, p_{2}, \ldots, p_{r}$ are the only primes congruent to $1(\bmod 6)$. Form the number $N=4\left(p_{1} p_{2} \cdots p_{r}\right)^{2}+3$. It is easy to see that N is not divisible by any of the primes $2,3, p_{1}, p_{2}, \ldots, p_{r}$. So N is divisible by some other prime q. However, $N \equiv 0(\bmod q)$ means that $4\left(p_{1} p_{2} \cdots p_{r}\right)^{2}+3 \equiv 0(\bmod q)$, which means that the number $a=2 p_{1} p_{2} \cdots p_{r}$ satisfies $a^{2} \equiv-3 \quad(\bmod q)$. Thus by part $(c), q \equiv 1 \quad(\bmod 6)$, and we have located a new prime of the form $6 k+1$; contradiction. Thus there are infinitely many such primes.

Note: you can instead use the choice $N=12\left(p_{1} p_{2} \cdots p_{r}\right)^{2}+1$. Do you see why?

