
Math 261 — Fall 1999–2000

Solutions to Midterm Exam

Problem 1. a) Find the prime factorizations of 192 and of 150.
b) Use your answer for part a) to find the GCD (192, 150).
c) Use your answer for part a) to find the sum of the factors of 150.

Solution. a) 192 = 26 · 3, 150 = 2 · 3 · 52.
b) (192, 150) = 2min(6,1) · 3min(1,1) · 5min(0,2) = 2 · 3 = 6.
c) The sum of the factors is (1 + 2)(1 + 3)(1 + 5 + 52) = 372.

Problem 2. a) Solve the equation 7x ≡ 1 (mod 101).
b) Find the general solution (with integers x, y) of the equation 22x + 60y = 6.

Solution. a) We seek the inverse of 7 mod 101. This can be found since (7, 101) = 1. By the
Euclidean Algorithm,

101 = 14 · 7 + 3, 3 = 101 − 14 · 7

7 = 2 · 3 + 1, 1 = 7 − 2 · 3 = 7 − 2(101 − 14 · 7) = 29 · 7 − 2 · 101

3 = 3 · 1 + 0.

This confirms that (7, 101) = 1 and that in fact 1 = 29 · 7 − 2 · 101, thus 1 ≡ 29 · 7 (mod 101) and
the desired answer is

x ≡ 29 (mod 101).

b) Here there is a solution because 6 is a multiple of the GCD (22, 60) = 2. Once again, by the
Euclidean Algorithm:

60 = 2 · 22 + 16, 16 = 60 − 2 · 22

22 = 1 · 16 + 6, 6 = 22 − 16 = 22 − (60 − 2 · 22) = 3 · 22 − 60 (∗)

16 = 2 · 6 + 4, 4 = 16 − 2 · 6 = 60 − 2 · 22 − 2(3 · 22 − 60) = 3 · 60 − 8 · 22

6 = 1 · 4 + 2, 2 = 6 − 4 = 3 · 22 − 60 − (3 · 60 − 8 · 22) = 11 · 22 − 4 · 60 (∗∗)

4 = 2 · 2 + 0.

We could actually have stopped the calculation at the identity (∗) because it gives us a particular
solution:

x0 = 3, y0 = −1.

Otherwise, we could multiply equation (∗∗) by 3 to get another particular solution, with x0 = 33
and y0 = −12. Let’s stick to the first particular solution given above, though.

The general solution is then written in terms of the particular solution, as well as the coefficients
22 and 60 and their GCD (22, 60) = 2:

{

x = x0 + (60/2)` = 3 + 30`,
y = y0 − (22/2)` = −1 − 11`,

where ` is an integer.

Problem 3. a) Find the remainder of 4183 mod 61.
b) Find the remainder of 2264 mod 25.
c) How many primitive roots are there mod 61?
(Remark: parts (a), (b), and (c) are independent.)

Solution. a) Note that 61 is prime, so by the Little Fermat Theorem, 460 ≡ 1 (mod 61). Thus

4183 ≡ 43·60+3 ≡ (460)3 · 43 ≡ 43 ≡ 64 ≡ 3 (mod 61).
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b) Here 25 = 52 is not prime, but φ(25) = 52 − 5 = 20, and Euler’s Theorem says that 220 ≡ 1
(mod 25). Thus

2264 ≡ 213·20+4 ≡ (220)13 · 24 ≡ 24 ≡ 16 (mod 25).

c) If g is a primitive root mod 61, then the other primitive roots are the numbers gi (mod 61)
where i is a number mod 60 and i is relatively prime to 60. Thus the number of such i is

φ(60) = φ(22 · 3 · 5) = (22 − 2)(3 − 1)(5 − 1) = 16.

Problem 4. Assume given a and m such that a has order ` mod m. Let k be given. Find, with
proof, the order (mod m) of ak.

Solution. The order of ak is the smallest number h > 0 such that (ak)h ≡ 1 (mod m). We first
find which h satisfy the above equation. As a preliminary, write d = (k, `), k = dk′, ` = d`′; thus
(k′, `′) = 1. Then we obtain:

(ak)h ≡ 1 (mod m) ⇔ akh ≡ 1 (mod m) ⇔ kh ≡ 0 (mod `) ⇔ dk′h ≡ 0 (mod d`′)

⇔ k′h ≡ 0 (mod `′) ⇔ h ≡ 0 (mod `′), because (k′, `′) = 1.

Thus the smallest solution for h is h = `′ = `/d, so the order of ak is `/(k, `).

Problem 5. a) Carefully state the Chinese remainder theorem.
b) Use the Chinese remainder theorem to show that if (a, 77) = 1, then a30 ≡ 1 (mod 77).

Solution. a) If m and n are relatively prime, then there is a one-to-one correspondence between
numbers x mod mn on the one hand, and between pairs of numbers (b mod m, c mod n) on the other
hand. The correspondence is given by the two congruences

{

x ≡ b (mod m)
x ≡ c (mod n)

. (∗)

Put differently: if (m, n) = 1, and given b and c, then the simultaneous congruences (∗) have a
solution x, and x is unique mod mn.

b) Since (a, 77) = 1, it follows that (a, 7) = 1 and (a, 11) = 1. Now by the Little Fermat
Theorem, we conclude that

a6 ≡ 1 (mod 7), a10 ≡ 1 (mod 11).

Raising the first equation to the 5th power, and the second equation to the 3rd power, we obtain

a30 ≡ 1 (mod 7), a30 ≡ 1 (mod 11).

But the number 1 is also congruent to 1 mod both 7 and 11; so by the Chinese Remainder Theorem,
a30 and 1 must be congruent mod 77 (since they both satisfy the congruences (∗) with x = a30, b =
c = 1, m = 7, and n = 11).

Problem 6. a) Find a solution of x2 ≡ −1 (mod 5).
b) Find a solution of x2 ≡ −1 (mod 25).
c) Find a solution of x2 ≡ −1 (mod 125).
(Remark: I am not asking you to find the most general solution; just find one particular solution

in each case.)

Solution. a) x is congruent to one of 0, 1, 2, 3, or 4 mod 5. The squares of these (taken mod 5) are
0, 1, 4, 4, and 1; thus x ≡ 2 or x ≡ 3 (mod 5). We’ll stick with the choice x ≡ 2 (but the other one
works as well.)
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b) Try to build on the solution to part (a) above: since we know x ≡ 2 (mod 5) is a solution
to the equation mod 5, we try x of the form 2 + 5`, where ` only matters mod 5. Thus we want

(2 + 5`)2 ≡ −1 (mod 25) ⇔ 4 + 20` + 25`2 ≡ −1 (mod 25) ⇔ 20` ≡ −5 (mod 25)

⇔ 4` ≡ −1 (mod 5) ⇔ ` ≡ 1 (mod 5).

Thus we can take as our solution
x = 2 + 5 · 1 = 7.

(Alternative method: if we want x ≡ 2 (mod 5), then the possibilities for x mod 25 are
2, 7, 12, 17, and 22, and a little trial and error also gives the solution x = 7. Another remark: if you
had started with the solution x = 3 to part (a), you would have obtained a solution x = 18 to part
(b).)

c) This is much the same as before; we try x = 7 + 25k, where k only matters mod 5. Once
again,

(7 + 25k)2 ≡ −1 (mod 53) ⇔ 49 + 350k + 54k ≡ −1 (mod 53) ⇔ 350k ≡ −50 (mod 53)

⇔ 14k ≡ −2 (mod 5) ⇔ k ≡ 2 (mod 5).

Thus we can take
x = 7 + 25 · 2 = 57.

(Once again, the other solution mod 125 is x = 68. Also, you could have found the solution x = 57
by trial and error, by trying for x all the numbers mod 125 that are congruent to 7 mod 25; this is
again a short list, consisting of 7, 32, 57, 82, 107.)

Problem 7. Let p be a prime number, and let k be a number such that (k, p − 1) = 1. Let a be
given (you may assume a 6≡ 0 (mod p) if you like). Show that the equation

xk ≡ a (mod p)

has exactly one solution x (mod p).
(Hint: Either raise the equation to the mth power for a suitable m, or use indices.)

Solution. (Preliminary remark: If a ≡ 0 (mod p), then the only solution for x is x ≡ 0 (mod p).
Otherwise, if a 6≡ 0, we can see that x 6≡ 0 as well. We assume that we are in this latter case
throughout this problem.)

Here is one way to solve this problem. First, find m such that km ≡ 1 (mod p − 1); this is
possible since (k, p − 1) = 1; thus km = (p − 1)n + 1 for some n. Now raise the original equation to
the mth power to obtain

xk ≡ a (mod p) ⇒ xkm ≡ am (mod p) ⇒ x ≡ am (mod p).

The second implication holds because xp−1 ≡ 1 (mod p). Thus if x is a solution, it must be
congruent to am. This establishes uniqueness of x, provided we can show that x exists. To do this,
just check that x = am genuinely is a solution:

(am)k ≡ amk ≡ a (mod p),

where once again the second equivalence holds because ap−1 ≡ 1 (mod p).
Here is another solution, totally independent of the first: choose a primitive root g mod p, and

write a ≡ gi (mod p), where i is the index of a relative to g. Instead of looking for y, we look for
its index y; so write x = gy and try to solve for j. Remember that the index y is really a number
mod (p − 1). The equation becomes

(gy)k ≡ gi (mod p) ⇔ gyk ≡ gi (mod p) ⇔ yk ≡ i (mod p − 1).

This last equation has a unique solution for y mod (p− 1), since k is invertible mod (p− 1). Since y
exists and is unique, the same can be said for x = gy.
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