

Physics Department

Physics 217 Final Exam

Name:			

Information:

• No make up of this exam without legal reason

I.D. No.

- Try to work out all questions
- This exam will have a total grade of 200

	eri.	
Content		<u>Grade</u>
1.	One-dimensional motion	
2.	Central force	
3.	Rotating frame	
4.	Motion of rigid body	
5.	Moment of Inertia	
6	Lagrangian Mechanics	

Problems:

(1) A car of mass m is moving with constant speed v_0 along a horizontal track. A force of air resistance is acting given by

$$f(v) = (\alpha + \beta v^2)$$

where α and β are positive constants, and v is the velocity of the car.

- (a) How long will it take the car to come to rest after the engine is turned off?
- (b) What is the distance traveled by the car?

Hint:
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right)$$
, $a \neq 0$

(2) A particle of mass m is moving under the influence of a central force given by

$$F(r) = -\frac{k}{r^2} + \frac{k'}{r^3}, (k, k' > 0)$$

- (a) Find the Lagrangian for the particle in terms of the coordinate r and θ
- (b) Set-up the equations of motion for r and θ , and show that the angular momentum is conserved.
- (c) Use the differential equation for the orbit, to find $r = r(\theta)$.
- (3) A carousel lies in the xy-plane, and rotates with a constant angular velocity. A bug of mass m starts at the origin, and moves outward without slipping with a speed v_o (see Figure).
 - (a) Find the force \vec{F}_b exerted by the carousel on the bug.
 - (b) Write the force \bar{F}_b in terms of the coordinates (x,y,z) and write down the transformation matrix between the two coordinate frames.

(4) A thin circular ring of radius R and mass on rolls down a plane inclined at angle θ from the horizontal (see Figure).

 (a) Calculate the minimum coefficient of friction μ necessary to keep the ring rolling without sliding. (Moment of inertia of the ring: mR²)

(5) A uniform disk of radius R has a mass M. Suppose that a hole of radius R/4 is drilled into the disk with the edge at the disk center (see Figure).

(a) Find the moment of inertia of this system about the central axis of the disk.

Hint: Moment of inertia of the full disk is 1/2 MR².

It is useful to remember the parallel axis theorem.

(6) A Pendulum of mass m is suspended by a string of length ℓ (negligible mass) from a point of support P.

The point of support performs a harmonic motion according to:

$$x(t) = A \sin \omega t$$

where A and ω are given. Assume that the pendulum swings in the xy-plane.

- (a) Find the Lagrangian for this pendulum.
- (b) Obtain the equation of motion of the pendulum.
- (c) Solve the equation of motion to obtain $\theta = \theta$ (t). for small oscillation (sin $\theta \approx \theta$, cos $\theta \approx 1$), imposing initial conditions: $\theta = 0$, θ (0) = 0 at t = 0.

Hint: complex notation may be useful to solve the equation of motion.