Problem 1 For $0<\epsilon \leq \pi$, let f_{ϵ} be the function in $H(\mathbb{T})$ given on $[-\pi, \pi)$ by

$$
f_{\epsilon}(x)= \begin{cases}1-\frac{|x|}{\epsilon} & \text { if }|x| \leq \epsilon \\ 0 & \text { if } \epsilon<|x| \leq \pi\end{cases}
$$

(i) (5 pts) Show that

$$
\widehat{f}(n)= \begin{cases}\frac{\epsilon}{2 \pi} & \text { if } n=0 \\ \frac{2 \sin ^{2}(n \epsilon / 2)}{\pi \epsilon n^{2}} & \text { if } n= \pm 1, \pm 2, \ldots\end{cases}
$$

(ii) (3 pts) Find the Fourier series of f_{π} (so here, $\epsilon=\pi$).
(iii) (4 pts) Write the series of part (ii) in real form.
(iv) (4 pts) Show that

$$
\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}=\frac{\pi^{2}}{8}
$$

Problem 2 Let $f \in C(\mathbb{T}) \cap P S(\mathbb{T})$ and consider the BVP

$$
(*) \quad\left\{\begin{array}{l}
u_{t}(x, t)=u_{x x}(x, t), \quad(x, t) \in \mathbb{R} \times(0, \infty) \\
u(x, 0)=f(x), \quad x \in \mathbb{R} .
\end{array}\right.
$$

(i) (12 pts) Use Fourier series to find a solution of $(*)$.
(ii) Put $f=f_{\pi}$, where $f_{\pi}(x)=1-|x| / \pi$ is as defined in Problem 1. Notice that since f_{π} is real-valued and even, a solution $u(x, t)$ of $(*)$ (restricted to the region $[0, \pi] \times[0, \infty)$ in the $x t$-plane) now represents the temperature at point x and time t of a one-dimensional body that occupies the interval $[0, \pi]$, has initial temperature $u(x, 0)=f_{\pi}(x)$, and is insulated along its length and at both ends.
(ii)-(a) (6 pts) Use part (i) and part (ii) of Problem 1 to find the temperature $u(x, t)$ for $t>0$. (It is something of the form $1 / 2+\sum_{k=0}^{\infty} a_{k}(t) \cos (2 k+1) x$.)
(ii)-(b) (4 pts) Find a number $T>0$ such that $0.4<u(x, t)<0.6$ for all x when $t>T$.
(ii)-(c) (2 pts) What point x_{0} of the body shows no change in temperature as t increases?
(iii) (4 pts) Write the solution obtained in part (i) as a convolution with the heat kernel

$$
h_{t}(x)=\sum_{n=-\infty}^{\infty} e^{-n^{2} t} e^{i n x}, \quad x \in \mathbb{R}
$$

(iv) (4 pts) Use the functions f_{ϵ} from Problem 1 to give a heuristic argument, based on the physical properties of the diffusion of heat, to explain why the heat kernel $h_{t}(x)$ is expected to be nonnegative everywhere on \mathbb{R}.

Problem 3 Let $f \in \mathcal{S}\left(\mathbb{R}^{2}\right)$. Use the Fourier transform to find a solution for each of the following PDEs.
(i) $(8 \mathrm{pts}) u_{x x}(x, y)+2 u_{y y}(x, y)+3 u_{x}(x, y)-4 u(x, y)=f(x, y), \quad(x, y) \in \mathbb{R}^{2}$.
(ii) $(8 \mathrm{pts}) u_{x x x x}(x, y)-u_{y y}(x, y)+2 u(x, y)=f(x, y), \quad(x, y) \in \mathbb{R}^{2}$.

Problem 4 True or False:
(i) (4 pts) If $f \in C^{2}(\mathbb{T})$ and $A \in \mathbb{C}$ are such that $f^{\prime \prime}(x)=A f(x)$ for all $x \in \mathbb{R}$, then $\operatorname{Im} A=0$?
(ii) (4 pts) If f is a bounded function in $C\left(\mathbb{R}^{d}\right)$ with $\|f\|_{L^{1}\left(\mathbb{R}^{d}\right)}<\infty$ and $\widehat{f} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$, then $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$?
(iii) (4 pts) There is a function $f \in H(\mathbb{T})$ whose Fourier series is

$$
\sum_{n=1}^{\infty} \frac{e^{i n x}}{n} ?
$$

(iv) (4 pts) There is a bounded function f on \mathbb{R}^{d} with $\|f\|_{L^{1}\left(\mathbb{R}^{d}\right)}<\infty$ whose Fourier transform is

$$
\widehat{f}(\xi)=\frac{1}{(1+|\xi|)^{d}} ?
$$

Problem 5

(i) (8 pts) State and prove Plancherel's theorem.
(ii) (6 pts) Let $f \in \mathcal{S}\left(\mathbb{R}^{8}\right)$. Prove that

$$
\int_{\mathbb{R}^{5}}\left|\int_{\mathbb{R}^{8}} e^{-2 \pi i(\xi, 0) \cdot u} f(u) d u\right|^{2} d \xi=\int_{\mathbb{R}^{5}}\left|\int_{\mathbb{R}^{3}} f(x, y) d y\right|^{2} d x
$$

Problem $6(6 \mathrm{pts})$ Suppose $\phi \in C(\mathbb{T}), \phi(x) \neq 0$ for all $x \in \mathbb{R}$, and

$$
\lim _{n \rightarrow+\infty} \int_{0}^{2 \pi} e^{-i n x^{2}} \phi\left(x^{2}\right) d x=0
$$

Prove that

$$
\lim _{n \rightarrow-\infty} \int_{0}^{2 \pi} e^{-i n x^{2}} \phi\left(x^{2}\right) d x=0
$$

