

AMERICAN UNIVERSITY OF BEIRUT

The Department of Mathematics

Math 213

Final Examination January 30, 2004

1. (15 pts.) If $\alpha, \beta, \gamma, \delta$ are the four angles of a convex quadrilateral, prove that

$$\sin \alpha \sin \beta \sin \gamma \sin \delta \le \frac{64}{\pi^4} \alpha \beta \gamma \delta.$$

Formulate, without proof, a generalization of this inequality.

2. (25 pts.) Let $\alpha: (-b,b) \to R^3$ be a regular curve in R^3 parametrized by arc length. Suppose that

$$|a_1|\alpha(s) - \mathbf{u}_1|^2 + |a_2|\alpha(s) - \mathbf{u}_2|^2 + |a_3|\alpha(s) - \mathbf{u}_3|^2 = c$$

where $\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3$ are fixed vectors, and a_1, a_2, a_3 , and c, are positive constants.

- (a) Prove that the trace of α lies on a sphere.
- (b) Show that the curvature κ and the torsion τ of α satisfy

$$\frac{1}{\kappa^2(s)} + \frac{1}{\tau^2(s)} \left[\left(\frac{1}{\kappa(s)} \right)' \right]^2 = \text{constant.}$$

- (c) If $\alpha(0) = 0$, show that $\kappa(s) \ge \left| \frac{a_1 u_1 + a_2 u_2 + a_3 u_3}{a_1 + a_2 + a_3} \right|^{-1}$.
- 3. (20 pts.) Let C and D be two points on the x-axis, and (β) the circle of center β and diameter CD. Let A and B be two points in the upper half-plane, inverse of each other with respect to (β). Let (α) be the semicircle in the upper half-plane which passes through A and B, and whose center α lies on the α axis. Let Γ be the intersection point of (β) and (α). Take a point E on (β) and draw EH perpendicular to the x-axis. Denote by G the intersection of CF and EH.
- (a) Taking C as center of inversion, and CE as radius of inversion, find, with justification, the inverse of (β) , and the inverse of (α) .
- (b) Find, with justification, the inverse point A_1 of A, and the inverse point B_1 of B, under the same inversion.
- (c) Find the Euclidean distances GA_1 , GB_1 , HA_1 , HB_1 and prove that A_1B_1 is parallel to the x-axis.
 - (d) Prove that any point M on (β) has equal hyperbolic distances from A and B.
 - 4. (15 pts.) Let $H^2 = \{(x,y) : y > 0\}$, the upper half-plane, with metric $ds = \frac{\sqrt{(dx)^2 + (dy)^2}}{y}$.
 - (a) Specify, without proof, four kinds of transformations under which ds is invariant.
- (b) If ABC is the hyperbolic triangle whose sides are given by the three equations: $y = \sqrt{1 x^2}$, x = -1, and $y = \sqrt{4 (x + 1)^2}$, sketch the triangle, and find the lengths of the sides, the measures of the angles, and the area.
- 5. (25 pts.) Let $\alpha: I \to R^3$ be a regular curve in R^3 parametrized by arc length, and $\beta: I \to R^3$ the curve given by

$$\beta(s) = \alpha(s) + (c - s)t(s)$$

where, c is a real constant, s is the arc length on α and t, n, b are the tangent, normal, and binormal to α . Denote by κ , τ the curvature and torsion of α , and by κ_1 , τ_1 the curvature and torsion of β .

- (a) Show that $\kappa^2 = \frac{\kappa^2 + \tau^2}{(c-s)^2 \kappa^2}$.
- (b) Show that the unit binormal of β is $b_1 = \frac{\kappa b + rt}{|(c-s)\kappa|\kappa_1|}$
- (c) Find the torsion of β .
- 6. (Extra credit) Let S be the helicoid surface given by

 $\mathbf{x}(u,v) = (u\cos v, u\sin v, bv), b \neq 0.$

(a) Show that S is a minimal surface and find its Gaussian curvature.

(b) If L_c is the intersection of S with the plane z = c, find the curvature and torsion of L_c .

