AMERICAN UNIVERSITY OF BEIRUT DEPARTMENT OF GEOLOGY

FINAL EXAMINATION

Geomorphology (Geol 210)	January 23, 2006
Dr. Fadi Nader	8:00 am
Exam rules apply	Time: 2 hours

PART I: Definitions and Short Answers

 Define ten out of the <u>twelve</u> following terms (20 points): Stochastic Model – Isostasy – Karren – Warm-based Glaciers – Abrasion – Fetch – Longshore Drift – Spits – Erodibility – Mixed Tides – Horn – Relief.

2. Short answers (30 points):

- a. The endogenic processes are usually constructive and they are grouped in the following categories (or types):
- b. List the major morphological features in the oceans and on continents.
- c. Name the major processes of weathering and define one of them.
- d. The Frictional Resistance of slope material is a function of both:
- e. What are the key properties of alluvial channels (in plan view)?
- f. Name the forces that induce the movement and entrainment of sediments in aeolian settings:
- g. Glaciers are composed of ice, and smaller amounts of:
- h. Glacial erosion is accomplished by three major processes; these are:
- i. Waves are characterized by their:
- j. <u>A *relative rise of sea level*</u> is an apparent rise in the mean level of the sea surface with respect to a landsurface and can result from:

PART II: Diagrams and Short Discussions

- 3. Draw the ternary classification of coastal deltas and briefly define the corresponding types of deltas (5 points).
- 4. Give a proper title to the following figure and label it (5 points).

5. Give a proper title to the following figure and explain it in less than 10 lines (10 points).

6. Give a proper title to the following table (5 points).

TYPE	FORM AND POSITION	MODE OF DEVELOPMENT Localized deflation Deposition of sand locally deflated upwind; arms are usually fixed by vegetation			
Blowout (A)	Circular rim around depression				
Parabolic dune (B)	'U' or 'V' shape in plan view with arms opening upwind to enclose a blowout				
Lunette (C)	Crescent-shaped opening upwind	Accumulation downwind of localized sediment source such as desiccated lake basin or pan			
Shrub-coppice dune (nebkha) (D)	Roughly elliptical to irregular in plan, streamlined downwind	Accumulation around and downwind of vegetation clump			
Lee dune (E)	Elongated downwind from topographic obstruction	Accumulation on protected lee side of obstacle			
Fore dune (E)	Roughly arcuate with arms extending downwind either side of obstruction	Accumulation in zone of disrupted airflow immediately windward of obstacle			
Climbing dune (F)	Irregular accumulation rising up windward side of large topographic obstruction	Accumulation in zone of disrupted airflow on windward side of obstacle			
Falling dune (F)	Irregular accumulation descending leeward side of large topographic obstruction	Accumulation in zone of disrupted airflow on upwind side of obstacle			
Echo dune (F)	Elongated ridge roughly parallel to, and separated from, windward side of topographic obstruction	Accumulation in zone of rotating airflow upwind from large obstacle			

PART III: Discussion

- 7. Answer **One** of the <u>two</u> following questions (25points):
 - a. Discuss the methods of measurement and estimation of present fluvial denudation rates.

* What are the estimates of fluvial denudation rates used for? Justify your answer.

The following three tables are intended to help you answer this question:

countries			AUTHOR	MEAN LOAD		EQUIVALENT	
	NATURAL	CULTIVATED	BARE SOIL		(10 ⁹ t a ⁻¹)	(t km ⁻² a ⁻¹)	(mm ka ⁻¹)
LOCATION	HATOKAL	LAND	DARE SOIL	Solid load*			Mechanical
				Fournier (1960)	58.1	392.6	145.4
UK	10-50	10-300	1000-4500	Jansen and Painter (1974)	26.7	180.4	66.8
USA	3-300	500-17 000	400-9000	Schumm (1963)	20.5 .	138.5	51.3
China	<200	15 000-20 000	28 000-36 000	Holeman (1968)	18.3	123.6	45.8
India	50-100	30-2000	1000-2000	Milliman and Meade	13.5	91.2	33.8
Nigeria	50-100	10-3500	300-15 000	(1983)			
Ivory Coast	3-20	10-9000	1000-75 000	Lopatin (1952)	12.7	85.8	31.8
			-	Solute load			Chemical [‡]
Source: Data from R. P. C. Morgan (1986) Soil Erosion and			Goldberg (1976)	3.9	26.4	5.9	
Conservation. Longman, London, Table 1.1, p. 5, based on various sources.		Livingstone (1963)	3.8	25.7	5.7		
		Meybeck (1979)	3.7	25.0	5.6		
		Meybeck (1976)	3.3	22.3	5.0		
				Alekin and Brazhnikova (1960)	3.2	21.6	4.8

* Suspended load only.
[†] Denudation rates based on a rock density of 2700 kg m⁻³.

[‡] Rates for chemical denudation assume that 40% of total solute load is from non-denudational sources.

Table 15.4. Average composition of World river water and estimates of denudational and nondenudational contributions for different constituents

	Ca ²⁺	Mg^{2+}	Na^+	K^+	Cl	SO_4^{2-}	HCO ₃	SiO ₂	Total
Average composition of	f 13.5	3.6	7.4	1.35	9.6	8.7	52.0	10.4	106.6
World river water (Concentration (mg 1 ⁻¹))								
Provenance of major so components (%)	olute								
Non-denudational:									
Precipitation (oceanic sa	lts) 2.5	15	53	14	72	19	-	-	12
Atmospheric CO ₂	-	-	-	-	-	-	57	-	28
Denudational:									
Chemical weathering <i>Source</i> : Based largely on data	97.5 in M. Meyt	85 beck (1983)	47 in: <i>Dissol</i> v	86 ved Loads o	28 f Rivers an	81 d Surface W	43 ater Quanti	100 ty Quality	60

Relationships. International Association of Hydrological Sciences Publication 141, 173-192.

b. Sea-level changes have significant impacts on the geomorphology of oceanic islands. Use the following diagrams to discuss and explain the origin and development of oceanic islands landscape and its relationship with sea-level changes.

The following three figures are intended to help you answer this question:

Fig. 17.18 Changes in the elevation of the ocean floor as a result of heating associated with a sub-lithospheric thermal anomaly. Such a heating anomaly may give rise to a volcano which grows sufficiently to emerge above sea level. (After R. S. Detrick and S. T. Crough (1978) Journal of Geophysical Research 83, Fig. 4(C), p. 1239. Copyright by the American Geophysical Union.)

Fig. 17.20 Types of oceanic island in the Pacific Ocean. Differences between the various types reflect the net effects of volcanism, oceanic lithosphere subsidence and flexure, sub-lithosperic heating and consequential uplift, eustatic sea-level change, coral growth and sub-aerial denudation. (From G. A. J. Scott and G. M. Rotondo (1983) Coral Reefs 1, Fig. 2, p. 141, based largely on H. J. Wiens (1962) Atoll Environment and Ecology. Yale University Press, New Haven and O. K. Leont' yev et al. (1975) USSR Oceanology 14, 840–846.)

Fig. 17.21 Relative sea-level change associated with the flexure of the lithosphere as a result of loading by a volcano. (A) The initial situation with coral reefs growing on volcanic substrate subsiding on cooling oceanic lithosphere. (B) The initial effects of lithospheric flexure brought about by the development of a volcano near by with submergence in the 'moat' and emergence on the 'arch'. (C) Further submergence and emergence occurs as the mass of the volcano increases and the flexure of the lithosphere becomes more marked. Note the short time scale of such deformation. (D) The application of a flexural model to the southern Cook Islands in the southern Pacific. Loading has been caused by three volcanoes - Rarotonga, Aitutaki and Manuae and the predicted uplift for the surrounding islands is compared with the observed uplift. The match is close except for Mangaia which may be within the zone of deformation of a fourth volcano to the south not included in the calculations. (Based on M. McNutt and H. W. Menard (1978) Journal of Geophysical Research 83, Fig. 2, p. 1207 and Fig. 4, p. 1210; and General Bathymetric Chart of the Oceans, 1984. Canadian Hydrographic Service (bathymetric contours).)

GOOD LUCK