

Mathematics 314, Final Examination, June 4, 2005

Problem 1. 20 pts.

Describe how the fundamental group $\pi(X, x_0)$ is defined.

Problem 2. 20 pts.

Let M and N be connected n-dimensional manifolds without boundary and let M#N denote their connected sum.

Suppose that $n \geq 3$ and that $\pi(M)$ and $\pi(N)$ are known.

What is $\pi(M#N)$? Why? Why this would not work when n=2?

Problem 3. 15 pts.

Remind the definition of a topological polyhedron.

Do <u>not</u> quote the definitions of a simplex or of a linearly independent set of points in \mathbb{R}^n .

Problem 4. 15 pts.

Show that the torus $T=S^1\times S^1$ is homeomorphic to a subset of the 3-dimensional sphere S^3 .

Then prove that T is not a deformation retract of S^3 .

Problem 5. 15 pts.

Let (\tilde{X}, p) be a covering space of X and (\tilde{Y}, q) be a covering space of Y. Show that $\tilde{X} \times \tilde{Y}$ is a covering space for $X \times Y$.

Problem 6. 15 pts.

Find the fundamental group of the following space/figure

Time: 120 minutes.

Good Luck!