

Geology 213 Final Exam Spring 1997.

Exam rules apply Time allowed: 2 hours

Section A (60 marks)

Answer this section on the sheet provided. Note that three marks will be given for a correct answer and one mark will be deducted for an incorrect answer.

1. An object 20cm long and oriented 350° is deformed such that in its finite state it is 25cm long and oriented 300°. Which of the following is true.

a.
$$e = 0.05$$
, $S = 0.5$, $\lambda = 5.0$, $\delta = 50$

b.
$$e = 0.15$$
, $S = 1.15$, $\lambda = 1.32$, $\forall = -2.4$

c.
$$e = 0.25$$
, $S=1.25$, $\lambda = 1.56$, $\lambda = -1.19$

c.
$$e = 0.25$$
, $S=1.25$, $\lambda = 1.56$, $\delta = -1.19$
d. $e = 0.25$, $S = 1.25$, $\lambda = 1.56$, $\delta = 1.19$

e.
$$e = 5$$
, $S = 6$, $\lambda = 36$, $\delta = -50$

Figure 1

2. Figure 1 shows a strain field diagram. Which area represents the field of contraction?

- a. A
- b. B
- c. C
- d. D
- e. E

Figure 2

- 3. Figure 2 is a Mohr stress diagram representing
- a. Differential stress
- b. Hydrostatic stress
- c. Uniaxial stress
- d. Axial stress
- e. Triaxial stress

Figure 3

- 4. Figure 3 is a stress-strain diagram for a limestone block subjected to deformation under a confining pressure condition of 103 MPa. Point C represents
- a. Yield strength
- b. Yield strength after strain hardening
- c. Ultimate strength
- d. Rupture strength
- e. Cohesive strength.

Figure 4

5. Figure 4 is:

- a. A Portrayal of ideal viscous behaviour
- b. A Portrayal of ideal plastic behaviour
- c. A Portrayal of Hooke's law
- d. None of the above
- e. All of the above

Figure 5

- 6. Figure 5 is a simplified deformation map. Which of the following statements is true
- a. Area A represents dissolution creep and mechanical twinning
- b. Area B represents dislocation creep
- c. Area E represents volume diffusion creep
- d. Statements a and b are both correct
- c. Statements b and c are both correct.
- 7. Screw dislocations are
- a. Oriented perpendicular to the direction of slip
- b. Oriented parallel to the direction of slip
- c. Oriented obliquely to the direction of slip
- d. Oriented either perpendicular or parallel to the direction of slip
- e. Oriented either parallel or oblique to the direction of slip
- 8. Boundary migration recrystallization is favoured by
- a. Low temperatures and high pore fluid pressures
- b. The presence of impurities
- c. Moderate to high temperatures and the presence of pore fluid
- d. A varied grain size and a varied mineralogy
- e. None of the above.
- 9. Which of the following statements regarding the Mohr failure envelope are true.
 - 1. $\sigma_0 = cohesive strength$
 - 2. To = tensile strength

 - 4. Φ = angle of internal friction
 - 5. Θ = angle between the fracture surface and the direction of greatest principal stress
- a. Only 1 is true
- b. 1 and 2 are both true, 3, 4 and 5 are false
- c. 1, 2 and 4 are true, 3 and 5 are false
- d. 1, 2, 3 and 5 are true and 4 is false
- e. All of the statements are true
- 10. The law that describes deformational behavior above the brittle-ductile transition is called:
- a. Coulomb criterion
- b. Mohr Coulomb criterion
- c. Van Mises criterion
- d. Griffith criterion
- e. Bverlee criterion

Figure 6

- 11. Figure 6 shows a Coulomb failure envelope. To begin with σ_1 and σ_3 are both compressive with low differential stress, but when the pore fluid pressure is raised the result is:
- a. Nothing
- b. The stress circle crashes into the tensile failure envelope and the rock breaks by mode 1 failure.
- c. The stress circle crashes into the parabolic failure envelope and the rock breaks through transitional tensile failure.
- d. The stress circle crashes into the parabolic failure envelope and breaks according to Coulomb's law of failure in the compressive field.
- e. The stress circle crashes into the frictional sliding envelope and breaks through transitional tensile behaviour.
- 12. Which of the following statements about fault rocks is true.
 - 1. A gouge is a fine grained (clast < 0.1mm) clayey fault rock formed under relatively low temperature and low pressure conditions.
 - 2. A megabreccia comprises > 70% clast (>0.5m) and < 30% matrix. It forms in area of low confining pressure and/or high fluid pressure.
 - 3. A pseudotachylite in a "metamorphic" fault rock comprising angular grains (< 0.1mm) set in a finer matrix. They form under conditions of high strain rate and medium confining pressure.
- a. Only 1 is true
- b. I and 2 are true, 3 is false
- c. 1 and 3 are true, 2 is false
- d. 2 and 3 are true, 1 is false
- e. 1, 2 and 3 are true.
- 13. A duplex is composed of four horses. A is at the bottom and D at the top.
 - A is 5m long and has slipped 6m
 - B is 10m long and has slipped 15m
 - C is 7m long and has slipped 6m
 - D is 15 long and has slipped 12m

The form of the duplex is:

- a. A hinterland dipping duplex
- b. An antiformal stack
- c. A foreland dipping duplex
- d. A combination of a hinterland dipping duplex and an antiformal stack
- e. A combination of a hinterland dipping duplex and a foreland dipping duplex.

- 14. Figure 7 shows a series of strata that have been faulted. Which of the following statements is true.
 - 1. Horizon a has undergone post depositional deformation
 - 2. Horizon a forms a roll-over anticline in the hangingwall of the fault
 - 3. Horizons B and C are both syntectonic
 - 4. Diagram 7b shows positive structural inversion
 - 5. Diagram 7b shows negative structural inversion
- a. 1, 2, 3 and 4 are true, 5 is false
- b. 1.2,3 and 5 are true, 4 is false
- c. 2, 3, and 5 are true, 1 and 4 are false
- d. 1, 2, and 4 are true, 3 and 5 are false
- e. 1, 2, and 3 are true, 4 and 5 are false
- 15. Simple buckling of a single layer is best described mathematically in terms of a. Dominant wavelength, thickness of stiff layer, elastic modulus of stiff layer, elastic modulus of confining medium
- b. Dominant wavelength, thickness of stiff layer, Young's modulus of stiff layer. Young's modulus of confining medium
- c. Dominant wavelength, thickness of stiff layer, coefficient of viscosity of stiff layer, coefficient of viscosity of confining medium.
- d. Dominant wavelength, thickness of stiff layer. Poisson's ratio of stiff layer. Poisson's ratio of confining medium and strain.
- e. Dominant wavelength, thickness of stiff layer, coefficient of viscosity of stiff layer, coefficient of viscosity of confining medium and the stretch in two direction within the plane of layering

Figure 8

- 16. Figure 8 is a picture of a metamorphic rock the fold would be best described as a
- a. Synform
- b. Antiform
- c. Syncline
- d. Anticline
- e. Synclinorium

17. Which of the following statements about L tectonites is true

- 1. They are the product of flattening
- 2. They form when S1 > S2 = S3
- 3. They form when an original sphere turns into a triaxial ellipsoid
- 4. They are exemplified by pencil structure
- a. 1 and 2 are true, 3 and 4 are talse
- b. 1 and 2 are false, 3 and 4 are true
- c. 1 and 3 are true, 2 and 4 are false
- d. 1 and 3 are false, 2 and 4 are true
- e. 1, 2, 3 and 4 are true.

18. Which of the following statements about cleavages is true.

- 1. Cleavage is divided into domains, microlithon domains and cleavage domains
- 2. Cleavage is divided into M domains and QF domains
- 3. M domains are the same as microlithon domains
- 4. QF domains are the same as cleavage domains
- 5. QF domains represent the original host rock
- a. 1 and 2 are true, 3, 4 and 5 are false
- b. 1, 2, and 3 are true, 4 and 5 are false
- c. 1, 2,3 and 5 are true, 4 is false
- d. 1, 2, 4 and 5 are true, 3 is false
- e. 1.2, and 5 are true 3 and 4 are false

- 19. Figure 9 is a composite showing different shear criteria. The sense of offset in each case is:
- a. All are dextral
- b. All are sinistral
- c. A, B, C and D are dextral, E, F, G and H are sinistral
- d. A, B,C and D are sinistral, E, F, G and H are dextral
- e. A. C. F and H are dextral, B. D. E and G are sinistral.

20. Figure 10 shows a strain ellipse divided into four sectors A. B. C and D. a. The strain ellipse is a result of progressive pure shear. A represents instantaneous and finite shortening, B represents finite shortening but instantaneous extension. C represents finite and instantaneous extension. D represents finite and instantaneous extension following an initial period of shortening.

b. The strain ellipse is a result of progressive pure shear. A represents finite shortening but instantaneous extension, B represents instantaneous and finite shortening, C represents finite and instantaneous extension following an initial period

of extension. D represents finite and instantaneous extension

c. The strain ellipse is a result of progressive simple shear. A represents instantaneous and finite shortening, B represents finite shortening but instantaneous extension, C represents finite and instantaneous extension. D represents finite and instantaneous extension following an initial period of shortening.

d. The strain ellipse is a result of progressive simple shear. A represents finite shortening but instantaneous extension, B represents instantaneous and finite shortening, C represents finite and instantaneous extension following an initial period

of extension. D represents finite and instantaneous extension.

e. The strain ellipse is a result of progressive simple shear. A represents instantaneous and finite shortening, B represents finite shortening but instantaneous extension, C represents finite and instantaneous extension following an initial period of extension, D represents finite and instantaneous extension.

Section B (20 marks)

Using diagrams, explain what the result would be in each of the following cases:

1.

2.

3.

4.

$$\mu_1/\mu_2$$
 low, a moderate

5.

Section C (20 marks)

Using diagrams explain (a) what is meant by the following terms and (b) the processes that led to their development.

- 1. Strain insensitive shape fabric
- 2. Brittle ductile shear zones.
- 3. Passive fold
- 4. Riedel shears
- 5. Cataclasite