American University of Beirut
 MATH 201
 Calculus and Analytic Geometry III
 Fall 2013-2014

quiz \# 1
time: 75 min

Exercise 1 (12 points) (answer on page 1 of t he booklet)
Find the limit of the following sequences:
a) $\frac{1+(-1)^{n}}{2^{n}}$
b) $\lim _{n \rightarrow+\infty}\left(\frac{2 n-1}{2 n+1}\right)^{n}$
c) $\lim _{n \rightarrow+\infty}(n+\ln n)^{2 / n}$

Exercise 2 (24 points) (answer on page 2 of the booklet)
Determine if the following series converges or diverges Justify your answers
a) $\sum_{n=1}^{+\infty} \frac{2 e^{-n}}{n+\ln n}$
b) $\sum_{n=1}^{\infty}\left(\frac{1+\cos \left(1 / 2^{n}\right)}{3}\right)^{n}$
c) $\sum_{n=4}^{+\infty} \sin \left(\frac{1}{\ln ^{2} n}\right)$
d) $\sum_{n=2}^{\infty} \frac{n^{2}+3^{n}}{2^{n}+n^{3}}$

Exercise 3 (15 points) (answer on page 3 of the booklet)
Consider the function

$$
F(x)=\int_{0}^{x} \frac{e^{-t}-1}{t} d t
$$

a) Express $F(x)$ as a power series
b) Estimate the value of $F(0.1)$ with an error of magnitude less than 10^{-3}

Exercise 4 (16 points) (answer on page 4 of the booklet)
Find the values of x for which the series

$$
\sum_{n=1}^{+\infty}\left(2^{1 / n}-1\right)(x-1)^{n}
$$

converges, distinguishing between absolute and conditional convergence

Exercise 5 (18 points) (answer on page 5 of the booklet)
a) Give the first four terms of the Maclaurin series of $f(x)=\sqrt{2+3 x}$, then deduce $f^{(3)}(0)$
b) Find the values of r and s for which

$$
\lim _{x \rightarrow 0}\left(\frac{\sin 3 x}{x^{3}}+\frac{r}{x^{2}}+s\right)=0
$$

Exercise 6 (15 points) (answer on page 6 of the booklet)
If $a_{n}>0$ and $\sum a_{n}$ converges, what can be said about $\sum\left(a_{n}\right)^{p}$, where $p \in \mathbb{R}$?

