American University of Beirut MATH 201

Calculus and Analytic Geometry III Fall 2013-2014

$$quiz \not\# 1$$

time: 75 min

Exercise 1 (12 points) (answer on page 1 of t he booklet)

Find the limit of the following sequences:

a)
$$\frac{1+(-1)^n}{2^n}$$
 b) $\lim_{n \to +\infty} \left(\frac{2n-1}{2n+1}\right)^n$ c) $\lim_{n \to +\infty} (n+\ln n)^{2/n}$

Exercise 2 (24 points) (answer on page 2 of the booklet)

Determine if the following series converges or diverges Justify your answers

a)
$$\sum_{n=1}^{+\infty} \frac{2e^{-n}}{n+\ln n}$$
 b) $\sum_{n=1}^{\infty} \left(\frac{1+\cos(1/2^n)}{3}\right)^n$ c) $\sum_{n=4}^{+\infty} \sin\left(\frac{1}{\ln^2 n}\right)$ d) $\sum_{n=2}^{\infty} \frac{n^2+3^n}{2^n+n^3}$

Exercise 3 (15 points) (answer on page 3 of the booklet)

Consider the function

$$F(x) = \int_0^x \frac{e^{-t} - 1}{t} dt$$

- a) Express F(x) as a power series
- b) Estimate the value of F(0.1) with an error of magnitude less than 10^{-3}

Exercise 4 (16 points) (answer on page 4 of the booklet)

Find the values of x for which the series

$$\sum_{n=1}^{+\infty} (2^{1/n} - 1) (x - 1)^n$$

converges, distinguishing between absolute and conditional convergence

Exercise 5 (18 points) (answer on page 5 of the booklet)

- a) Give the first four terms of the Maclaurin series of $f(x)=\sqrt{2+3x}$, then deduce $f^{(3)}(0)$
- b) Find the values of r and s for which

$$\lim_{x \to 0} \left(\frac{\sin 3x}{x^3} + \frac{r}{x^2} + s \right) = 0$$

Exercise 6 (15 points) (answer on page 6 of the booklet)

If $a_n > 0$ and $\sum a_n$ converges, what can be said about $\sum (a_n)^p$, where $p \in \mathbb{R}$?