All Tests to Determine an Infinite Series is Convergent or Divergent Math 201 - Fall 2013

Kamal Aziziheris

September 16, 2013

- 1. (*n*-th Term Test) If $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ is Divergent.
- 2. (Geometric Series) Suppose a and r are fixed numbers. If |r| < 1, then

$$\sum_{n=1}^{\infty} ar^n$$

is **Convergent** to

$$\frac{a}{1-r}$$

Otherwise, it is **Divergent**.

3. (Telescopic Series) Assume that for all n, $a_n = b_n - b_{n+1}$, where $\{a_n\}$ and $\{b_n\}$ are two sequences. Then

$$\sum_{n=1}^{\infty} a_n = b_1 - \lim_{n \to \infty} b_n.$$

4. (Integral Test) Suppose that for all n, $a_n = f(n)$, where f is a continuous, positive, decreasing function of x for all $x \ge N$ (N is a positive integer). Then

 $\sum_{n=N}^{\infty} a_n$ and $\int_N^{\infty} f(x) dx$ both converge or both diverge.

- 5. (Comparison Test) Let $\sum a_n$ and $\sum b_n$ be series with nonnegative terms. Suppose that for some integer N, $a_n \leq b_n$ for all $n \geq N$. Then:
 - If $\sum b_n$ converges, then $\sum a_n$ converges.
 - If $\sum a_n$ diverges, then $\sum b_n$ diverges.

6. (Limit Comparison Test) Suppose that $a_n, b_n > 0$ for all $n \ge N$, where N is a fixed positive integer. If

$$L = \lim_{n \to \infty} \frac{a_n}{b_n},$$

then

- If $0 \neq L \neq \infty$ (call it the "Ideal Case"), then $\sum a_n$ and $\sum b_n$ both converge or both diverge.
- If L = 0 and $\sum b_n$ converges, then $\sum a_n$ converges.
- If $L = \infty$ and $\sum b_n$ diverges, then $\sum a_n$ diverges.
- 7. (*n*-th Root Test) Suppose that $a_n > 0$ for all $n \ge N$, where N is a fixed positive integer. If

$$L = \lim_{n \to \infty} \sqrt[n]{a_n},$$

then

- If L < 1, then $\sum a_n$ converges.
- If L > 1, then $\sum a_n$ diverges.
- If L = 1, then the test fails.
- 8. (Ratio Test) Suppose that $a_n > 0$ for all $n \ge N$, where N is a fixed positive integer. If

$$L = \lim_{n \to \infty} \frac{a_{n+1}}{a_n},$$

then

- If L < 1, then $\sum a_n$ converges.
- If L > 1, then $\sum a_n$ diverges.
- If L = 1, then the test fails.