American University of Beirut Department of Electrical and Computer Engineering EECE 491 – Discrete-time Signal Processing

Practice Exam

Problem 1: [Ideal LPF]

- a) Determine the impulse response h[n] of an ideal discrete-time low-pass filter with cutoff frequency $\omega_c = 0.4\pi$.
- b) If we allow a group delay of 2 time units, what is the corresponding impulse response?

Problem 2: [LTI Systems] The input/output relationship for three different systems is given below:

- System I: $x[n] = (1/3)^n$, $y[n] = 2(1/3)^n$
- System II: $x[n] = (1/2)^n$, $y[n] = (1/4)^n$
- System III: $x[n] = (2/3)^n u[n], \quad y[n] = 4(2/3)^n u[n] 3(1/2)^n u[n]$

Using the Eigen-function property of LTI systems, which of the following statements most accurately describes each of the systems above? If you choose (iii), specify h(n) and $H(e^{j\omega})$.

- i. The system cannot possibly be LTI
- ii. The system must be LTI
- iii. The system can be LTI, and there is only one LTI system that satisfies this I/O relationship
- iv. The system can be LTI, and cannot be uniquely determined from the information in this I/O relationship

<u>Problem 3</u>: [LTI Systems] Consider the system shown below in Figure 1, where $|\alpha| < 1$:

Figure 1

- a) Determine the impulse response h[n] and frequency response $H(e^{j\omega})$ of the overall system.
- b) Is this system causal?

Problem 4: [**LTI Systems**] For the system shown in Figure 2, determine the output y[n] when the input x[n] is $\delta[n]$ and $H(e^{j\omega})$ is

<u>Problem 5</u>: [Pole-Zero Systems]

a) The pole-zero plot shown in Figure 3 corresponds to the z-transform X(z) of a causal sequence x[n]. Sketch the pole-zero plot of Y(z), where y[n] = x[-n+3] and determine the ROC of Y(z).

b) Let x[n] be the sequence with the pole-zero plot shown in Figure 4. Sketch the pole-zero plot or $v[n] = \cos\left(\frac{\pi n}{2}\right)x[n]$.

<u>Problem 6</u>: The pole-zero plots shown in Figure 5 describe six different causal LTI systems. Answer the following questions for each case. Only indicate the entries corresponding to a "YES" in the table below.

Figure	5
--------	---

System	А	В	С	D	Е	F
IIR?						
FIR?						
Stable?						
Minimum-phase?						
Linear phase?						
$\left H\left(e^{j\omega}\right)\right = \text{constant}?$						
Has stable and causal inverse?						
Has shortest impulse response (least # of non- zero samples)?						
Has low-pass frequency response?						
Has minimum group delay?						

Problem 7: Consider an LTI system whose impulse response is given by

$$h[n] = a \cdot \delta[n] + b \cdot \delta[n-1] + c \cdot \delta[n-2] + d \cdot \delta[n-3]$$

where the coefficients a, b, c, d are complex numbers. Give three different non-trivial conditions on a, b, c, d so that the corresponding frequency response $H(e^{j\omega})$ has linear phase. Determine the phase in each case.

Problem 8: Figure 6 shows the frequency response $A_e(e^{j\omega})$ of a discrete –time FIR filter of length M + 1.

- a) What type (I, II, III, or IV) of linear-phase system is this? Explain how you can tell. In case your answer results in(M+1) being even, assume M+1=2L. In case your answer in(M+1) being odd, assume M+1=2L+1.
 - **Type I**: (M + 1) odd, symmetric **Type II**: (M + 1) even, symmetric **Type III**: (M + 1) odd, anti-symmetric **Type IV**: (M + 1) even, anti-symmetric
- b) Show that $A_e(e^{j\omega})$ cannot correspond to an FIR filter generated by the Parks-McClellan algorithm with a passband edge frequency of $\pi/3$, a stopband edge frequency of $2\pi/3$, and error-weighting function of unity in the passband and stopband. Explain your reasoning. *Hint*: The alternation theorem states that the best approximation is unique.
- c) Based on Figure 6 and the statement that $A_e(e^{j\omega})$ cannot correspond to an optimal filter, what can be concluded about the value of *L* for the filter in the figure?