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 Note on contour integration method for inverse z-transformation  
 
The z-transform is defined by the summation 
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and converges in an annular region 1 2R z R  . The inverse z transform is given by 
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where C1 is any closed path in the region of convergence that encompasses the origin. For example, the path of 
integration could be a circle of radius 1 1 2R C R  . 
 
A theorem from complex variable theory states that a contour integral can be evaluated directly as 
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The residue Rk of a complex function f(z) at pole pk of order 1 is defined as 
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The residue Rk of a complex function f(z) at pole pk of multiple order M is defined as 
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So, given a rational function X(z) and a specified region of convergence R1 < |z| < R2, we can compute the 
inverse z-transform x(n) as follows: 
 

1. Make a list of the poles of zn−1X(z) in the region 0 ≤ |z| < R1. Since ROC cannot include poles, and C1 
is a circle including origin, the poles must lie in region between origin and R1 (the smaller radius). 

2. Compute the residues of these poles and add them up. The result is precisely x(n). 
 
This method is called the contour integration method for computing the inverse z-transform. It can be 
somewhat cumbersome because of the poles created at z = 0 by the factor zn−1 when n < −1. These are multiple 
poles and the multiplicity n−1 depends on the time index n. Calculating the residues for these can be laborious. 
 
Example: Let  
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For 0n  , we have a pole of order one at z = a. The residue of  1 1/ 1nz az   at z a is 
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Therefore, x(n) = an in this case. 
 
However, if n<0, there is a pole of order n – 1 at z = 0. We have 
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Therefore, x(n) = 0 in this case. Hence, 
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