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Announcements

= Reading
— 0&S
* Chapter 4
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Sample-Rate Conversion

= |tis often necessary to change the sampling rate of a DT signal to obtain a new
DT representation of the underlying CT signal.

el [ ] wld sl [ ) [T wh

I —

Nl
)

x[n]=x,(nT) C.T.signal sampled at T fi
x[n]=x,(nT}) C.T.signal sampledat 7, #T

= Operation is often called “resampling”
= One way to obtain x;[n] from x[n] is as follows:

— Reconstruct x.(t) from x[n] using ideal and band-limited interpolation

00 sin[ﬂ(t—nT)/T]

% (1)= % x[n]

— n(t—nT)/T

— Resample x.(t) with period T, to obtain x;[n]

— Approach is impractical due to non-ideal analog reconstruction filter, D/A converter and
A/D converter

= Objective: do sample rate conversion using only discrete-time operations
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Resampling: Examples

Changing the Sampling Rate
) - =

e Conversion between audio formats

Compact 48.0 Digital
Disc ™ 221 ™| Audio Tape
44.1 KHz ’ 48 KHz

* Speech compression

Speech 1 Speech for
on DAT I = | | Telephone
48 KHz 6 8 KHz
¢ Video format conversion
Film 30 Television
= _ -
24 frames/sec 24 30 frames/sec

source: UT austin
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Downsampling
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Sample-Rate Reduction by an Integer Factor

=  Sampling rate of a sequence can bereduced by “sampling” it:

— Called “down-sampling” or “compression”
> ¢M >
x;[n]=x[nM]=x, (nMT) x[n] xq4[n] = x[nM]
Sampling Sampling
M=2 period T period 7y, = MT
l sample-rate compressor
x[n]
IRAIRARIIGRAS
0 n
Sl LT.r.[ T,I.LLLwL.T
0 n
---ITrHTI”TnT-~
0 n
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Sample-Rate Reduction by an Integer Factor

if X, (jQ)=0 for [Q>Qy =

x;[n] is an exact representation of x, (¢) if z7/T; =7/ (MT)2=Qy

* Therefore, the sampling rate can be reduced to /M without aliasing if the
original sampling rateis at least M times the Nyquist rate

= Or equivalently, if the bandwidth of the sequenceis first reduced by a factor of M
by discrete-time filtering.

= Note also that the principle of sampling in one domain results in replicated
aliases in the dual domain applies here

— Since we are sampling the signal, we expect periodic replication in the frequency
domain

Prof. M. Mansour EECE 491: Discrete-time Signal Processing 7



Frequency-Domain Relationship of Downsampling

x[n]=x,(nT) = X(e/)= _k_z_oo [(;) 2;/«))
-0, 5 5 siraar )

SetSiSM—l

. M-1 00 ;
=>Xd(efw)=L l S x|; W _2th_2yn
M 5 |Ti e € MT T MT

= X, (eja)) _ LMil ](a)—Zm')/M)
= M i=0
N\
DTFT of x,[n] DTFT of x[n]
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Interpretation of the Relationship

; I 2= o 2xr
X, (e?)=— ¥ X,| j| —-="=
)= X c[](MT MT D
X4(ei®) can be thought of being composed of a superposition of infinite set of

copies of X (jQ2), amplitude scaled by 1/MT, frequency scaled through w = QT,,
and shifted by integer multiples of 2t

. M-1 . .
or using the relationship Xd(efa’):i ¥ X(ej(w—m)/M)

i=0

X,(ei®) can be thought of being composed of M amplitude-scaled copies of the
periodic DTFT X(ei®), frequency scaled by M, shifted by integer multiples of 21

Either interpretation makes it clear that X,(e/®) is periodic and aliasing can be
avoided if X(ei?) is bandlimited:

X(e™)=0, wy<|oj<z

2
—22w
M N
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Frequency-domain lllustration of Downsampling (no aliasing)

Assumerzz?”:MZN M=2

X,(e/v) = %[ X(e/o) + X(eliw-27)2)]

M=2)

=27 - T 27 =0T,

(d)

|
ﬂ5’>
|
2
|

(®)

X(ei®)
1
T
/.\ | | /\ ©
2@ -T -y on=QNT o 2 w=QT 2” 2”
© ,S === 2QN
T, 2T
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Frequency-domain lllustration of Downsampling (with aliasing)

T
Assumeﬂszz%r:%l]\, =>QN=ﬁ M =3

Hy(el®
X.(jQ) a(e’®)
1 1

| | | |
-Qy Qy Q 27 - T 2 w=QT

(a) R
- . ()
(to avoid aliasing, LPF X(e/®) with cutoff frequency w. = /M
- before downsampling)

~|—

/?tl(ejw)

(M =3)

27 37 -m T 37 2m w=0T, 2 - T 27 w=0T,
2

© ()
(aliasing occurs due to downsampling)

In general aliasing occurs if oy\M = m or wy = /M
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Decimator

= We saw that aliasing occurs due to downsampling if

woyM 27

= To avoid aliasing, need to low-pass filter x[n] with an ideal LPF with cutoff
frequency w,. = /M before downsampling

— The output i[n] canthen be downsampled by a factor of M without aliasing
=  Downsampling by lowpass filtering followed by compression is called decimation

— System is called decimator )
Downsampler or decimator

Needed to i L E L LT LT
avoid aliasing :r ----------- s DT filter o E
! Lowpass filter | ! |
: > Gain=1 — > ¢M : > I
x[n] Cutoff = /M | ¥[n] Xgln] £ X[nM]
. Sampling Sampling Sampling E
! period T peJ:riod T period :T 1 =MT !

= Note: %, [n] = )?[nM] no longer represents the original underlying CT signal x(t)

— Rather, %, [n] =X, (an) where Ty=MTand X_ (t) is obtained from x.(t) by low-pass
filtering with cutoff frequency
Q. =n/T;=m(MT)
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Upsampling
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Increasing the Sample-Rate by an Integer Factor

= Consider DT signal x[n] whose sample rate we wish to increase by a factor of L.
— Underlying CT signal is x.(t)

" Obtain x;[n]=x.(nT;), whereT,=T/L,
from x[n]=x,(nT)

Needed for
= |ncreasing the sampling rate is called “upsampling” interpolation
=  We have X; [n] = x[n/L] =X, (nT /L), whenn=0,*L,*2L,--- ,

Upsampler or interpolator )
i GG ECL Lt . DT filter ' :
Lo . Lowpass filter i
| — f L ———>| Gamn=L p—— !
L x[n) wlnl | Cutoff=w/L | x[n] |
i E Sampling Sémpling Sampling
. 1 period T peridd 7; = T/L period T; = T/L
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(1) Expander: Time-Domain Relations

Time domain
illustration of
expander with
L=2

%, [n]=

S TL

x[n] X,[n]

x[n / L] n=0,tL,¥2L,L
0 otherwise

or equivalently x, [n]= E x[k]|8[n—kL]

f=—c0

- O
—O o

IS YN

.
L O
@)

L O
@)

L 0a

O

—Ob
O
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(2) Expander: Frequency-Domain Relations

Assume Q =277[=2§2N = Qy :%

—| 4L I—
x[n] xe[n]
X.(jQ)
x,[n]= 3 x[k]6[n—kL] ,
fr=—o0
l DTFT . =
(a)
- - . X(ei®)
Xe(e]w): _2_ k_z_ x[k]ﬁ[n—kL])e_jm %
= ozo: X[k]e_ijk —2|,7-r - T I21')' w=QT
fr=—c0
:X(eij) N

Xe(e/) = X (eh)

e Output DTFT is frequency-
scaled version of DTFT of input
* wisreplaced by wl

h
h
P.
e
h
[\.

(©)
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(3) Lowpass Filter

= The LPFwith gain L and cutoff frequency w, = 1t/L plays the role of the
reconstruction filter to obtain x;[n] from x.[n]

Assume Q) = %

reconstruction filter

& Hi(e)

sampled at T

~
|

(®)

X, (/@) = X (L) /\ |

lE}

|
|
&~
e}
it}
=
=
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(3) Lowpass Filter

= The reconstruction LPF, fills in the intermediate values to obtain x;[n] from x,.[n]
— Hence the reconstruction filter does interpolation
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Interpolation

Obtain a time-domain relationship between x;[n] and x[n]
Impulse response of the LPF is

n[n]= ST L) ot =L
zn/ L
We have
x;[n]=x,[n]*h[n] . i _
' o fn]= x[k]sm[iz(n kL)/L]
x,[n]= Y x[k]S[n—kL] koo m(n—kL)/L
k=—o0

h;[n] has the properties:

— hf0]=1
— hin]=0,forn= L, 2L,..
Therefore,

x;[n]=x[n/L]=x.(nT/L)=x,(nT;), foralln

1
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Practical Interpolators

= |deal LPFsfor interpolation cannot be implemented exactly
— PM algorithm gives good FIR approximations

= Examine other forms of interpolation
— Ex:linear interpolators

b ] = 1-|n|/L  |n|<L
in L1 0 otherwise
1
I
’.\4/5 lm[n]

g L=3

~

/5
i 2/5
. T 1/5
° r'TT T\O °
0

Impulse response for linear interpolation.
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Example: Linear Interpolation by Filtering

x[n] x[n]

Original samples in
Xiinln] are preserved
since h;[0] = 1 and h;[n]

n+L-1
Xin [I’l] = . ZL lxe [k]hlin [n _k]
=n—L+
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Example: Linear Interpolation by Filtering (cont’d)

Nature of distortion in the intervening samples is better understood by comparing
frequency responses of ideal and linear interpolators

h [ ] I—M/L ‘n‘SL
lin 0 otherwise
()1 sin(wL/2) ]
lin L sin(@/2)
= H;(e/®)

20\

If original sampling rate greatly exceeds Nyquist rate, signal will not vary significantly
between samples, and hence linear interpolation will be more accurate for

oversampled signals
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FIR Filters as Interpolators

= |deal bandlimited interpolators involve all original samples in the convolution of
each interpolated sample

= In contrast, linear interpolation involves only two

= To get better approximation, use longerimpulse responses

= FIR filters le- [n] are advantageousin this case. To interpolate by a factor L, they
are usually designed with the following properties:

1}

2

2

~.
T

o~

| B (i[ ]n = KL‘ Interpolated output
n|=h|-n|, nl< KL N i
ool wmo £[n]= S x[K]R[n-k]
- k=n-KL+1
=0, n==xL*2L,-- +KL

Guarantee original signal samples are preserved in output
X, [n] = x[n/L], atn=0,xL,x2L,---

Filter will not introduce any phase shift into the interpolated samples

Only 2K non-zero samples within the region of support of fll. [n - k] are
involved in the interpolation
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FIR Filters as Interpolators

= |llustration of interpolation involving 2K = 4 samples when L = 5.
— Eachinterpolated value depends on 2K = 4 samples of the original input

— Computation requires only 2K multiplications and 2K — 1 additions since there are
always L — 1 zero samples in x.[k] between each of the original samples

= Higher-order Lagrange interpolation formulas are possible from theory of
numerical analysis
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Changing the Sample Rate by an Noninteger Factor

= By combining decimation and interpolation, it is possible to change the sample
rate by a noninteger factor

Interpolator Decimator

I Lowpass filter

—> 4L ——{ Gain=L

|

I Lowpass filter |

> Gain=1 f—> |M [——>
|

I

x[n] | x[n] | Cutoft=m/L | | x[n] | | Cutoff=m/M | %[n] | %]
Sampling e S e e e et o it o o o e _
period: . ) T T ™

L L L L
(a)

Choosing L, M we get arbitrarily close to any desired ratio of sampling periods

Lowpass filter
T L Gain=L ¢ M
Cutoff = s =
x[n] X[n] | . x;[n] Xaln]
: min (7/L, w/M)
Sampling
period: T T T ™
L L L
(b)
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Example

Assume Q= %

Q

Assume x.(t) is sampled at
Nyquist rate Q\=m/T.

Want to change sampling
Period to 3T/2.

(b)

Can choose L=2, M=3.

_ 47 2r _m s 27 4_71'=2ﬂ_ w=0T/L
L L L L L L
©
LPF has gain 2 and cutoff . T (7
w.=min(m/2, t/3)=1/3
—2|1r —]7r e T 7Ir 2I17' 0=0QT/L
M ‘M

(@
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