EECE 491: Discrete-time Signal Processing

Mohammad M. Mansour

Dept. of Electrical and Compute Engineering

American University of Beirut

Lecture 10: Sample-Rate Conversion

Announcements

- Reading
 - 0&S
 - Chapter 4

Sample-Rate Conversion

It is often necessary to change the sampling rate of a DT signal to obtain a new DT representation of the underlying CT signal.

- Operation is often called "resampling"
- One way to obtain $x_1[n]$ from x[n] is as follows:
 - Reconstruct $x_c(t)$ from x[n] using ideal and band-limited interpolation

$$x_r(t) = \sum_{n=-\infty}^{\infty} x[n] \frac{\sin[\pi(t-nT)/T]}{\pi(t-nT)/T}$$

- Resample $x_c(t)$ with period T_1 to obtain $x_1[n]$
- Approach is impractical due to non-ideal analog reconstruction filter, D/A converter and A/D converter
- Objective: do sample rate conversion using only discrete-time operations

Resampling: Examples

Changing the Sampling Rate

Conversion between audio formats

• Speech compression

Video format conversion

source: UT austin

Downsampling

Sample-Rate Reduction by an Integer Factor

- Sampling rate of a sequence can be reduced by "sampling" it:
 - Called "down-sampling" or "compression"

$$x_d[n] = x[nM] = x_c(nMT)$$

 $\begin{array}{c|c}
\hline
x[n] & & \downarrow M \\
\hline
x_d[n] = x[nM]
\end{array}$

Sampling period *T*

Sampling period $T_d = MT$

sample-rate compressor

Sample-Rate Reduction by an Integer Factor

if
$$X_c(j\Omega) = 0$$
 for $|\Omega| > \Omega_N \implies x_d[n]$ is an exact representation of $x_c(t)$ if $\pi/T_d = \pi/(MT) \ge \Omega_N$

- Therefore, the sampling rate can be reduced to π/M without aliasing if the original sampling rate is at least M times the Nyquist rate
- Or equivalently, if the bandwidth of the sequence is first reduced by a factor of M
 by discrete-time filtering.
- Note also that the principle of sampling in one domain results in replicated aliases in the dual domain applies here
 - Since we are sampling the signal, we expect periodic replication in the frequency domain

Frequency-Domain Relationship of Downsampling

$$x[n] = x_c(nT) \implies X\left(e^{j\omega}\right) = \frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j\left(\frac{\omega}{T} - \frac{2\pi k}{T}\right)\right)$$

$$x_d[n] = x[nM] = x_c(nT_d) \implies X_d\left(e^{j\omega}\right) = \frac{1}{T_d} \sum_{r=-\infty}^{\infty} X_c \left(j\left(\frac{\omega}{T_d} - \frac{2\pi r}{T_d}\right)\right)$$

$$= \frac{1}{MT} \sum_{r=-\infty}^{\infty} X_c \left(j\left(\frac{\omega}{MT} - \frac{2\pi r}{MT}\right)\right)$$

$$\Rightarrow X_d\left(e^{j\omega}\right) = \frac{1}{M} \sum_{i=0}^{M-1} \left\{\frac{1}{T} \sum_{k=-\infty}^{\infty} X_c \left(j\left(\frac{\omega}{MT} - \frac{2\pi k}{T} - \frac{2\pi i}{MT}\right)\right)\right\}$$

$$= x\left(e^{j(\omega-2\pi i)/M}\right)$$

$$\Rightarrow X_d\left(e^{j\omega}\right) = \frac{1}{M} \sum_{i=0}^{M-1} X\left(e^{j(\omega-2\pi i)/M}\right)$$

$$\Rightarrow X_d\left(e^{j\omega}\right) = \frac{1}{M} \sum_{i=0}^{M-1} X\left(e^{j(\omega-2\pi i)/M}\right)$$
DTFT of $x_d[n]$

Interpretation of the Relationship

$$X_d \left(e^{j\omega} \right) = \frac{1}{MT} \sum_{r=-\infty}^{\infty} X_c \left(j \left(\frac{\omega}{MT} - \frac{2\pi r}{MT} \right) \right)$$

• $X_d(e^{j\omega})$ can be thought of being composed of a superposition of infinite set of copies of $X_c(j\Omega)$, amplitude scaled by 1/MT, frequency scaled through $\omega = \Omega T_d$, and shifted by integer multiples of 2π

or using the relationship
$$X_d\left(e^{j\omega}\right) = \frac{1}{M} \sum_{i=0}^{M-1} X\left(e^{j(\omega-2\pi i)/M}\right)$$

- $X_d(e^{j\omega})$ can be thought of being composed of M amplitude-scaled copies of the periodic DTFT $X(e^{j\omega})$, frequency scaled by M, shifted by integer multiples of 2π
- Either interpretation makes it clear that $X_d(e^{j\omega})$ is periodic and aliasing can be avoided if $X(e^{j\omega})$ is bandlimited:

$$X(e^{j\omega}) = 0, \quad \omega_N \le |\omega| \le \pi$$
$$\frac{2\pi}{M} \ge 2\omega_N$$

Frequency-domain Illustration of Downsampling (no aliasing)

Frequency-domain Illustration of Downsampling (with aliasing)

Assume
$$\Omega_s = \frac{2\pi}{T} = 4\Omega_N$$
 $\Rightarrow \Omega_N = \frac{\pi}{2T}$

$$\Rightarrow \Omega_N = \frac{\pi}{2T}$$

$$M = 3$$

(to avoid aliasing, LPF X($e^{i\Omega}$) with cutoff frequency $\omega_c = \pi/M$ before downsampling)

(aliasing occurs due to downsampling)

In general aliasing occurs if $\omega_N M \geq \pi$ or $\omega_N \geq \pi/M$

Decimator

We saw that aliasing occurs due to downsampling if

$$\omega_N M \ge \pi$$

- To avoid aliasing, need to low-pass filter x[n] with an ideal LPF with cutoff frequency $\omega_c = \pi/M$ before downsampling
 - The output $\tilde{x}[n]$ can then be downsampled by a factor of M without aliasing
- Downsampling by lowpass filtering followed by compression is called decimation
 - System is called decimator

Downsampler or decimator

Sample-rate compressor

- Note: $\tilde{x}_d[n] = \tilde{x}[nM]$ no longer represents the original underlying CT signal $x_c(t)$
 - Rather, $\tilde{x}_d[n] = \tilde{x}_c(nT_d)$ where $T_d = MT$ and $\tilde{x}_c(t)$ is obtained from $x_c(t)$ by low-pass filtering with cutoff frequency

$$\Omega_c = \pi / T_d = \pi (MT)$$

Upsampling

Increasing the Sample-Rate by an Integer Factor

- Consider DT signal x[n] whose sample rate we wish to increase by a factor of L.
 - Underlying CT signal is $x_c(t)$
- Obtain

$$x_i[n] = x_c(nT_i)$$
, where $T_i = T/L$,
from $x[n] = x_c(nT)$

- Increasing the sampling rate is called "upsampling"
- We have $x_i[n] = x[n/L] = x_c(nT/L)$, when $n = 0, \pm L, \pm 2L, \cdots$

Upsampler or interpolator

Needed for

interpolation

(1) Expander: Time-Domain Relations

$$x_e[n] = \begin{cases} x[n/L] & n = 0, \pm L, \pm 2L, L \\ 0 & \text{otherwise} \end{cases}$$

or equivalently
$$x_e[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-kL]$$

Time domain illustration of expander with L = 2

(2) Expander: Frequency-Domain Relations

Assume
$$\Omega_s = \frac{2\pi}{T} = 2\Omega_N \Rightarrow \Omega_N = \frac{\pi}{T}$$

$$x_e[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n - kL]$$

$$\begin{split} X_{e}\left(e^{j\omega}\right) &= \sum_{n=-\infty}^{\infty} \left(\sum_{k=-\infty}^{\infty} x[k] \delta[n-kL]\right) e^{-j\omega n} \\ &= \sum_{k=-\infty}^{\infty} x[k] e^{-j\omega Lk} \\ &= X\left(e^{j\omega L}\right) \end{split}$$

- Output DTFT is frequencyscaled version of DTFT of input
- ω is replaced by ωL

(3) Lowpass Filter

• The LPF with gain L and cutoff frequency $\omega_c = \pi/L$ plays the role of the reconstruction filter to obtain $x_i[n]$ from $x_e[n]$

(3) Lowpass Filter

- The reconstruction LPF, fills in the intermediate values to obtain $x_i[n]$ from $x_e[n]$
 - Hence the reconstruction filter does interpolation

Interpolation

- Obtain a time-domain relationship between $x_i[n]$ and x[n]
- Impulse response of the LPF is

$$h_i[n] = \frac{\sin(\pi n/L)}{\pi n/L}$$
; cutoff $\omega_c = \pi/L$

We have

$$x_{i}[n] = x_{e}[n] * h[n]$$

$$x_{e}[n] = \sum_{k=-\infty}^{\infty} x[k] \delta[n-kL]$$

$$\Rightarrow x_{i}[n] = \sum_{k=-\infty}^{\infty} x[k] \frac{\sin[\pi(n-kL)/L]}{\pi(n-kL)/L}$$

- $h_i[n]$ has the properties:
 - $-h_i[0] = 1$
 - $-h_i[n] = 0$, for n = L, 2L,...
- Therefore,

$$x_i[n] = x[n/L] = x_c(nT/L) = x_c(nT_i)$$
, for all n

Practical Interpolators

- Ideal LPFs for interpolation cannot be implemented exactly
 - PM algorithm gives good FIR approximations
- Examine other forms of interpolation
 - Ex: linear interpolators

$$h_{\text{lin}}[n] = \begin{cases} 1 - |n| / L & |n| \le L \\ 0 & \text{otherwise} \end{cases}$$

Example: Linear Interpolation by Filtering

$$x_{\text{lin}}[n] = \sum_{k=n-L+1}^{n+L-1} x_e[k] h_{\text{lin}}[n-k]$$

Example: Linear Interpolation by Filtering (cont'd)

Nature of distortion in the intervening samples is better understood by comparing frequency responses of ideal and linear interpolators

$$h_{\text{lin}}[n] = \begin{cases} 1 - |n|/L & |n| \le L \\ 0 & \text{otherwise} \end{cases}$$

$$H_{\text{lin}}(e^{j\omega}) = \frac{1}{L} \left[\frac{\sin(\omega L/2)}{\sin(\omega/2)} \right]^{2}$$

If original sampling rate greatly exceeds Nyquist rate, signal will not vary significantly between samples, and hence linear interpolation will be more accurate for oversampled signals

FIR Filters as Interpolators

- Ideal bandlimited interpolators involve all original samples in the convolution of each interpolated sample
- In contrast, linear interpolation involves only two
- To get better approximation, use longer impulse responses
- FIR filters $\tilde{h}_i[n]$ are advantageous in this case. To interpolate by a factor L, they are usually designed with the following properties:

Interpolated output

$$\tilde{x}_{i}[n] = \sum_{k=n-KL+1}^{n+KL-1} x_{e}[k] \tilde{h}_{i}[n-k]$$

→ Guarantee original signal samples are preserved in output

$$\tilde{x}_i[n] = x[n/L], \text{ at } n = 0, \pm L, \pm 2L, \cdots$$

→ Filter will not introduce any phase shift into the interpolated samples

Only 2K non-zero samples within the region of support of $\tilde{h}_i[n-k]$ are involved in the interpolation

FIR Filters as Interpolators

- Illustration of interpolation involving 2K = 4 samples when L = 5.
 - Each interpolated value depends on 2K = 4 samples of the original input
 - Computation requires only 2K multiplications and 2K 1 additions since there are always L 1 zero samples in $x_e[k]$ between each of the original samples

 Higher-order Lagrange interpolation formulas are possible from theory of numerical analysis

Changing the Sample Rate by an Noninteger Factor

 By combining decimation and interpolation, it is possible to change the sample rate by a noninteger factor

Choosing L, M we get arbitrarily close to any desired ratio of sampling periods

Example

- Assume $x_c(t)$ is sampled at Nyquist rate $\Omega_N = \pi/T$.
- Want to change sampling Period to 3T/2.
- Can choose *L*=2, *M*=3.
- LPF has gain 2 and cutoff $\omega_c = \min(\pi/2, \pi/3) = \pi/3$

