EECE 491: Discrete-time Signal Processing

Mohammad M. Mansour

Dept. of Electrical and Compute Engineering

American University of Beirut

Lecture 1: Introduction

Administrative

Instructor

Dr. Mohammad M. Mansour, Professor of ECE

- Office: 508 Bechtel

Extension: 3597

– Email: <u>mmansour@aub.edu.lb</u>

Send emails with Subject: EECE491

Will try to reply back during office hours

Course Webpage on Moodle

Teaching Assistant (TA)

Hussein Hammoud, hah49@mail.aub.edu

Office hours:

- Mondays: 9:00 - 11:00 AM

Lecture hours:

T-R: 2:00 – 3:30 pm in room 208 Bechtel

My Research Area

- Software-defined modems for 5G wireless networks
- High-performance communication and digital signal processing systems
- Capacity-approaching channel coding and applications
- Energy-efficient designs by algorithm, architecture and circuit cooptimization
- Error-resilient architectures and circuits, and applications
- Computer architecture

Course Policy

Grading:

_	2 Midterms	(35%)
_	Final Exam	(35%)
_	Homework Assignments	(10%)
_	Project	(20%)

- Projects: Individually done
- Lectures begin on the hour. Please come time.
- Exams are closed book and comprehensive.

Course Syllabus

Main Textbooks

- "Digital Signal Processing", J. Proakis and D. Manolakis, Prentice Hall, 4th Ed.
- "Discrete Time Signal Processing", A. Oppenheim and R. Schafer, Prentice Hall,
 3rd Ed.
- "Digital Signal Processing", S. Mitra, McGraw Hill, 4th Ed.

P&M

O&S

Mitra

Course Topics

- Signals, Systems, and Transforms (Review)
- LTI Discrete-Time Systems
- Digital Filter Structures
- FIR and IIR Digital Filter Design
- Filter Design Based on a Least Squares Approach
- DSP Algorithm Implementation
- Finite Word-length Effects
- Multirate Digital Signal Processing
- Multirate Filter Banks and Wavelets
- DSP Architectures
- Applications to Software Defined Radios and Communications Modems
- Introduction to Adaptive Filtering

Topics and Applications

Digital signal processing algorithms/applications

- Signals, convolution, sampling (signals & systems)
- Transfer functions & freq. resp. (signals & systems)
- Filter design & implementation, signal-to-noise ratio
- Quantization (embedded systems) and data conversion

Digital communication algorithms/applications

- Analog modulation/demodulation (signals & systems)
- Digital modulation/demodulation, pulse shaping, pseudo noise
- Signal quality: matched filtering, bit error probability

Digital signal processor (DSP) architectures

- Assembly language, interfacing, pipelining (embedded systems)
- Harvard architecture, addressing modes, real-time programming

Software Tools

- Matlab
 - DSP toolbox
- Simulink
- DSP toolkits in lab

Signal Processing in General

Signal Processing

- Generation, transformation and extraction of information
- Algorithms with associated architectures and implementations
- Applications related to processing information

Examples:

- Convert one signal to another
 - Examples: Filter, generate control commands, etc.
- Interpretation and information extraction
 - Examples: Speech recognition, machine learning

Real-time Signal Processing systems

Guarantee delivery of data by a specific time

Digital Signal Processing

- Digital: Signal x(t) is discrete both in amplitude and time
 - Discrete samples (in time): x[0], x[1], x[2], ...
 - Discrete amplitude (quantization)
 - x[n] quantized and represented as a binary number
- Notation:
 - Continuous-time signal: x(t)
 - Discrete-time signal: x[n]
 - Digital signal: Q(x[n])
- Digital representation (on a computer)
- Discrete-time samples can be samples of a continuous-time signal:
 - Samples taken T seconds apart (T = sampling period)

$$x[n] = x(t)|_{t=nT} = x(nT)$$

Why Learn DSP?

"Swiss-Army-Knife" of modern EE

- Impacts all aspects of modern life
 - Communications (wireless, internet, GPS, etc.)
 - Control and monitoring (cars, machines, etc.)
 - Multimedia (mp3, cameras, videos, restoration, etc.)
 - Health (medical devices, imaging, etc.)
 - Economy (stock market, prediction)
 - More ...

What Can You Do with Digital Signal Processors?

Consumer audio

Pro-audio

Smart meters DSL modems

Communications

Tablets

Wireless Wearable Multichannel EEG

What Can You Do with Digital Signal Processors?

machine vision

Avionics & Defense

High Performance Computing

Video Encoding/ Decoding

Biometrics

Advantages of DSP

- Flexibility
- System/implementation does not age
- "Easy" implementation
 - Ex: Programmable implementation on a DSP
- Reusable hardware
- Sophisticated processing
- Process on a computer
- (Today) Computation is cheaper and better
 - Vector DSPs
 - Multi-core DSPs

DSP System Structure

Key Components of a Sampled Data System

[Source: Analog Devices]

Discrete Sampling of an Analog Signal

Time-Domain Effects of Aliasing

CASE 1: f_S = 8 f_a

CASE 2: f_S = 4 f_a

CASE 3: f_S = 2 f_a

CASE 4: $f_S = 1.3 f_a$

Frequency Domain Effects of Aliasing

Examples

Example I: Audio Compression

- Compress audio by 10x without perceptual loss of quality.
- Sophisticated processing based on models of human perception
- 3MB files instead of 30MB
 - Entire industry changed in less than 10 years!

Example II: Digital Camera

Example II: Digital Camera (cont'd)

Example II: Digital Camera (cont'd)

Compression of 40x without perceptual loss of quality

Example of slight over-compression difference enables x60 compression!

Example III: Computational Photography

Prof. M. Mansour

EECE 491: Discrete-time Signal Processing

Example IV: Software Defined Radio (SDR)

Traditional radio:

- Hardware receiver/demodulators/filtering
- Outputs analog signals or digital bits

Software Defined Radio:

- Uses RF font end for baseband signal
- High speed ADC digitizes samples
- All processing chain done in software

Example IV: Software Defined Radio (cont'd)

Advantages:

- Flexibility
- Upgradability
- Sophisticated processing
- Ideal Processing chain not approximate like in analog hardware

Already used in consumer electronics

- Cellphone baseband processors
- Wifi, GPS, etc.

Communication System Structure

COMM System Structure

Information sources

- Voice, music, images, video, and data (message signal m(t))
- Have power concentrated near DC (called baseband signals)

Baseband processing in transmitter

- Lowpass filter message signal (e.g. AM/FM radio)
- Digital: Add redundancy to message bit stream to aid receiver in detecting and possibly correcting bit errors

COMM System Structure

Carrier circuits in transmitter (RF back end)

- Up-convert baseband signal into transmission band
- Apply bandpass filtering to enforce transmission in band

COMM System Structure

Channel – wired or wireless

- Propagating signals spread and attenuate over distance
- Boosting improves signal strength and reduces noise

Receiver

- Carrier circuits down-convert bandpass signal to baseband
- Baseband processing extracts/enhances message signal

Course Objective

Develop skills for

- Analyzing and synthesizing algorithms and systems that process discrete-time signals
- Implementing these algorithms and systems