Homework # 2 - Solution

CIVE 646 - Water Resources Systems: Planning and Management

(Fall 2011-12)

4-24 An industrial firm makes two products, A and B. These products require water and other resources. Water is the scarce resource-they have plenty of other needed resources. The products they make are unique, and hence they can set the unit price of each product at any value they want to. However experience tells them that the higher the unit price for a product, the less amount of that product they will sell. The relationship between unit price and quantity that can be sold is given by the following two *demand* functions:

- (a) What are the amounts of A and B, and their unit prices, that maximize the total revenue that can be obtained? Formulate the problem and use optimization tool of Matlab to solve it.
- (b) Suppose the total amount of A and B could not exceed some amount T^{max} . What are the amounts of A and B, and their unit prices, that maximize total revenue, if:
 - i) $T^{\max} = 10$ ii) $T^{\max} = 5$

Formulate the problem and use optimization tool of Matlab to solve it.

Water is needed to make each unit of *A* and *B*. The production functions relating the amount of water X_A needed to make *A*, and the amount of water X_B needed to make *B* are $A = 0.5 X_A$, and $B = 0.25 X_B$, respectively.

(c) Find the amounts of *A* and *B* and their unit prices that maximize total revenue assuming the total amount of water available is 10 units. Formulate the problem and use optimization tool of Matlab to solve it.

Solution:

(a) Total Revenue Functions: $TR_A = (8 - A)A = 8A - A^2$ $TR_B = (6 - 1.5B)B = 6B - 1.5B^2$ Maximize TR = $TR_A + TR_A$

Optimization tool of Matlab:

function f = objfun(x) a = x(1); b = x(2); f = $-8*a + a^2 - 6*b + 1.5*b^2$;

AUB-FEA-CEE

CIVE646- Water Resources Systems: Planning and Management

Optimization	lool								
File Help									
Problem Setup an	d Results				Options			\rightarrow	
Solver: fmincor	n - Constrair	ned poplinear minimiz	ation	~	E Stopping criteria				
Algorithm: Active	cet				Function value ch	eck]	
Droblem	,oc				User-supplied derivatives				
Objective Superior	. Ochikur				🕀 Approximated der	rivatives)	
	: woojian				Hessian				
Derivatives:	Approxir	mated by solver		<u> </u>	 Algorithm settings 	,]	
Start point:	[0 0]				🕀 Inner iteration sto	opping criteria			
Constraints:					Plot functions				
Linear inequalities	: A:		b:		Current point	Function count	Function value		
Linear equalities:	Aeq:		beq:		Max constraint	Current step	First order optimality		
Bounds:	Lower:	[0 0]	Upper:		Custom function:	1			
Nonlinear constrai	nt function:					2			
Derivatives:		Approximated by :	solver	~		9			
1915 19 1916					Custom function:				
Run solver and view	/ results			0	🖃 Display to comma	nd window)	
Ctart Davies Stop					Level of display: iter	rative		v	
Current iteration				Clear Desulta	Show diagnostics				
Currenciceration.					_				
Optimization	i runnir termin	lg. nated.							
Objective fu	unction	value: -21.9	999999996467	082					
Final point:									
1 🔺 2									
4	2	J							
<				>					
de atart	A D U	ID COURS				A			
Start	D:(AU	in cours	HW2_CIVE646	Exercises - Mic	Exercises and	MATLAB 7.8	0.0 🥠 Optimization Tool	EW K W 10:44 AM	

 $\begin{array}{l} A=4,\,P_0(A)\ =4\\ B=2,\,P_0(B)\ =3\\ TR=4*4+2*3=22 \end{array}$

b) In this case:

 $A + B \le T^{\max} \le 10$

The solution for *A* and *B* would be same as (a) since $A + B = 6 \le 10$

 $A + B \le T^{max} \le 5$

function f = objfun(x) a = x(1); b = x(2); f = $-8*a + a^2 - 6*b + 1.5*b^2$;

Subject to $A + B \le 5$

AUB-FEA-CEE

CIVE646- Water Resources Systems: Planning and Management

A Obtimu	Zation Tu	.01									الثالعا
File Help											
Problem 5	Problem Setup and Results						Options >>>				
Solver	fmincon -	Constrain	ed poplinear minimiza	tion		~	E Stopping crite	ria			
Alexaker						🕒 Function valu	e check)	
Algorithm: Active set						🕀 User-supplied	derivatives				
Problem		- 1.4					Approximated	derivatives			
Objective	e function:	@objtun				~	🕀 Hessian)
Derivativ	es:	Approxin	nated by solver			~	主 Algorithm set	ings)
Start poi	nt:	[0 0]					🕀 Inner iteration	n stopping criteria)
Constrair	nts:						Plot functions)
Linear ine	equalities:	A:	[1 1]		b: [5]		Current point	Function count	Function	value	
Linear eo	nalities	Aeo.		be	n, [-	Max constrain		Eirst orde	er optimality	
Boundar	danciosi	Louiori	[0.0]	Uppe	4·					si openialey	
bourius;		Lower:	[00]	oppe		_	Custom function	n:			
Nonlineai	r constraint	runction:					🖂 Output functi	n)
Derivativ	es:		Approximated by so	olver		*	Custom function	on:			
Run solver and view results					Display to cor	mand window					
The second second second second						iterativa					
Start	Paus	se	Stop					literative			
Current iteration: 3 Clear Results						ults	Show diagnost	ics			
I						^					
Optimization running.											
Optimi	zation	termin	ated.								
Upject	Objective function value: -21.400000000000000										
Final point:											
	J.1.0										
						2					
🐮 stai	t I	🚞 D:\AU	в со 🛛 🔟 HW:	2_CIVE	Exercises	Exe	ercises a 🛛 🥠 I	1ATLAB 7 🥠 O	ptimizatio	📝 Editor - D:\	EN 🔇 🧐 11:13 AM
	and the second second										

 $\begin{array}{l} A=3,\,P_0(A)\ =5\\ B=2,\,P_0(B)\ =3\\ TR=5^*3+2^*3=21 \end{array}$

c) In this case:

 $\begin{array}{ll} A=0.5X_A \ \Rightarrow \ X_A=2A \\ B=0.25X_B \ \Rightarrow \ X_B=4B \\ X_A+X_B\leq 10 \ \Rightarrow \ 2A+4B\leq 10 \end{array}$

function f = objfun(x) a = x(1); b = x(2); f = $-8*a + a^2 - 6*b + 1.5*b^2$;

Subject to: $2A + 4B \le 10$

AUB-FEA-CEE

🖡 Optimization Tool 📃 🖃 🛃							- 7 🛛				
File Help											
Problem Se	tup and l	Results					Options				>>
Solver:	Solvery Emission - Constrained poplinear minimization					🛨 Stopping crite	ria				
Algorithm	Active cel	-					🕀 Function value	e check			
Problem	ACCIVE 30	•					🕀 User-supplied	derivatives			
Problem					Approximated	derivatives					
Derivative	- Checkorn	Approvis	nated by column				🛨 Hessian]
Derivative		Approxi	nated by solver				🕀 Algorithm sett	ings			
Start poin	t:	[ບບ]					🕀 Inner iteration	n stopping criteria			
Constrain	ts:						Plot functions				
Linear ine	qualities:	A:	[24]	b:	[10]		Current point	Function count	Function value		
Linear equ	ualities:	Aeq:		beq:			Max constraint	Current step	First order optimality		
Bounds:		Lower:	[0 0]	Upper:			Custom functio	on:			
Nonlinear constraint function:											
Derivatives: Approximated by solver			~								
						Custom functio	n:				
Run solver and view results							📃 Display to com	mand window			
Start	Paus	se	Stop				Level of display:	iterative			~
Current iteration:						lts	Show diagnost	ics			
Optimiz	Optimization running.										
Optimis	ation	termin	nated.								
Objecti	Objective function value: -19.54545454545454547										
Final point	Final point:										
1											
3,	3.182 0.909										
<						>					
🛃 star	t I	🗁 D:\AU	IB Co 1 HW2_CIV		Exercises	The Exer	rcises a 🛛 📣 M	1ATLAB 7	ptimizatio 📝 Editor	- D:\ EN 🧖	🔇 🧐 11:27 AM
	- Inc.	-						and the second se			

 $\begin{array}{l} A=3,\,P_0(A)\ =5\ \&\ X_A=6\\ B=1,\,P_0(B)\ =4.5\ \&\ X_B=4\\ TR=5^*3+4.5^*1=19.5 \end{array}$

4.27 Assume that there are *m* industries or municipalities adjacent to a river, which discharge their wastes into the river. Denote the discharge sites by the subscript *i* and let W_i be the kg of waste discharged into the river each day at those sites *i*. To improve the quality downstream, wastewater treatment plants may be required at each site *i*. Let x_i be the fraction of waste removed by treatment at each site *i*. Develop a model for estimating how much waste is removal is required at each site to maintain acceptable water quality in the river at a minimum total cost. Use the following additional notation:

 $\underline{a_{ij}} = \underline{\text{decrease in quality}}$ at site *j* per unit of waste discharged at site *i* $\underline{a_j} = \underline{\text{quality at site j that would result if all controlled upstream discharges were eliminated}$ (i.e., $W_1 = W_2 = 0$) $\underline{O_j} = \underline{\text{minimum acceptable quality}}$ at site *j* $C_i = \text{cost per unit (fraction) of waste removed at site$ *i* $}$

Solution:

4.28 Assume that there are two sites along a stream, i = 1, 2, at which waste (BOD) is discharged. Currently, without any wastewater treatment, the quality, q_2 and q_3 , at each of sites 2 and 3 is less than the minimum desired, Q_2 and Q_3 , respectively.

For each unit of waste removed at site *i* upstream of site j, <u>the quality improves by A_{ij} </u>. How much treatment is required at sites 1 and 2 that meets the standards at a minimum total cost?

Following are the necessary data:

- C_i = cost per unit fraction of waste treatment at site *i* (both C_1 and C_2 are unknown but for the same amount of treatment, whatever that amount, $C_1 > C_2$)
- R_i = decision variables, unknown waste removal fractions at sites i = 1, 2

$A_{12} = 1/20$	$W_1 = 100$	$Q_2 = 6$
$A_{13} = 1/40$	$W_2 = 75$	$Q_3 = 4$
$A_{23} = 1/30$	$q_2 = 3$	$q_3 = 1$

Solution:

Minimize
$$\sum_{i=1}^{2} C_i(R_i)$$

subject to: $q_j + \sum_{i=1}^{2} A_{ij} W_i R_i \ge Q_j$ $j = 2, 3$
 $0 \le R_i \le 1$ $i = 1, 2$

Minimize $C_1R_1 + C_2R_2$

Subject to $q_2 + A_{12}W_1R_1 \ge Q_2$ $q_3 + A_{13}W_1R_1 + A_{23}W_2R_2 \ge Q_3$

or

Minimize $C_1R_1 + C_2R_2$

Subject to

$$(at j = 2)$$

$$3 + (1/20)(100) R_1 \ge 6 \text{ or } R_1 \ge 3/5 = 0.6$$

$$(at j = 3)$$

$$1 + (1/40)(100) R_1 + (1/30)(75)R_2 \ge 4 \text{ or }$$

$$R_1 + R_2 \ge 3/2.5 = 1.2$$

$$0 \le R_1 \le 1$$

$$0 \le R_2 \le 1$$

Hence if $C_1 > C_2$, $R_1 = R_2 = 0.6$

<u>4.40</u> Consider a crop production problem involving three types of crops. How many hectares of each crop should be planted to maximize total income?

Resources:	Max Limits	<u>nits</u> <u>Resource requirements</u>			
		Crops: Corn	Wheat		<u>Oats</u>
Water	1000/week	3.0	1.0	1.5	units/week/ha
Labor	300/week	0.8	0.2	0.3	person hrs/week/ha
Land	625 he	ctares			
<u>Yield</u> \$/ha		400	200	250	

Formulate a linear programming model?.

Solution:

Maximize	400*Corn + 200*Wheat + 250*Oats
Subject to:	Water constraint: $3*Corn + Wheat + 105*Oats \le 1000$ Labor constraint: $0.8*Corn + 0.2*Wheat + 0.3*Oats \le 300$ Land constraint: Corn + Wheat + Oats ≤ 625

4.43 In Indonesia there exists a wet season followed by a dry season each year. In one area of Indonesia all farmers within an irrigation district plant and grow rice during the wet season. This crop brings the farmer the largest income per hectare; thus they would all prefer to continue growing rice during the dry season. However, there is insufficient water during the dry season to irrigate all 5000 hectares of available irrigable land for rice production. Assume an available irrigation water supply of 32×10^6 m³ at the beginning of each dry season, and a minimum requirement of 7000 m³/ha for rice and 1800 m³/ha for the second crop.

- (a) What proportion of the 5000 hectares should the irrigation district manager allocate for rice during the dry season each year, provided that all available hectares must be given sufficient water for rice or the second crop?
- (b) Suppose that crop production functions are available for the two crops, indicating the increase in yield per hectare per m³ of additional water, up to 10,000 m³/ha for the second crop. Develop a model in which the water allocation per hectare, as well as the hectares allocated to each crop, is to be determined, assuming a specified price or return per unit of yield of each crop. Under what conditions would the solution of this model be the same as in part (a)?

Solution:

a) Let X_R be the hectares of rice to be grown during the dry season and 5000 - X_R be the hectares of the second crop. The total amount of water required is:

 $7000^* X_R + 1800(5000 - X_R) = 32 \ge 10^6$

Hence $X_R = 4435$ ha of rice.

b) Let the known parameters:

 P_R , P_S equal the price per unit yield of rice and the second crop

Define as the unknown variables:

 X_R, X_S = the hectares of rice and second crop

 W_R , W_S = the additional water allocations per ha.

Assuming the objective is to maximize total income, the model can be written:

Maximize	$P_R (7000 + W_R) X_R$ -	$+ P_{S}(1800 + W_{S}) X_{S}$
Subject to	Water availability: Land availability: Bounds	$(7000 + W_R) X_R + (1800 + W_S) X_S \le 32 \times 10^6$ $X_R + X_S \le 5000$ $W_S \le 10,000 \text{ m}^3/ha$

4.45 In Algeria there are two distinct cropping intensities, depending upon the availability of water. Consider a single crop that can be grown under intensive rotation or extensive rotation on a total of A hectares. Assume that the annual water requirements for the intensive rotation policy are 16000 m³ per hectare, and for the extensive rotation policy they 4000 m³ per hectare. The annual net production returns are 4000 and 2000 dinars, respectively. If the total water available is 320,000 m³, show that as the available land area A increases, the rotation policy that maximizes total net income changes from one that is totally intensive to one that is increasingly extensive.

Solution:

Let X_I be the hectares of intensive cropping intensity and X_E be the hectares of extensive cropping intensity. Maximizing net annual production:

Maximize $4000 X_{I} + 2000 X_{E}$ Subject to $16 X_{I} + 4 X_{E} \le 320$ $X_{I} + X_{E} \le A$ $X_{I}, X_{E} \ge 0$

Solving graphically:

This graph shows that as A increases, the optimum value of X_I decreases and X_E increases.

Optimization tool of Matlab:

For A = 50: $X_I = 10, X_E = 40$

AUB-FEA-CEECIVE646- Water Resources Systems: Planning and ManagementFall 2011-12

📌 Optimization Tool	
File Help	
Problem Setup and Results	Options >>>
Solver: linprog - Linear programming	E Stopping criteria
Algorithm: Medium scale - simpley	Display to command window
Problem	Level of display: iterative
f: [-4000 -2000]	Show diagnostics
Constraints:	
Linear inequalities: A: [16 4]; [1 1] b: [320]; [50]	
Linear equalities: Aeq: beq:	
Bounds: Lower: [0 0] Upper:	
Start point:	
⊙ Let algorithm choose point	
O Specify point:	
Run solver and view results	
Start Pause Stop	
Current iteration: 2 Clear Results	
Optimization running.	
Objective function value: -120000.0	
Optimization terminated.	
Final point:	
2 40	
<u><</u>	
Start Di LAUB Courses (Wat 🖾 HW2 CIVE646 Optim 🖌 MATL	